0000000001320895

AUTHOR

Philippe Ciais

showing 10 related works from this author

Climate Extreme Versus Carbon Extreme: Responses of Terrestrial Carbon Fluxes to Temperature and Precipitation

2020

International audience; Carbon fluxes at the land-atmosphere interface are strongly influenced by weather and climate conditions. Yet what is usually known as “climate extremes” does not always translate into very high or low carbon fluxes or so-called “carbon extremes.” To reveal the patterns of how climate extremes influence terrestrial carbon fluxes, we analyzed the interannual variations in ecosystem carbon fluxes simulated by the Terrestrial Biosphere Models (TBMs) in the Inter-Sectoral Impact Model Intercomparison Project. At the global level, TBMs simulated reduced ecosystem net primary productivity (NPP; 18.5 ± 9.3 g C m−2 yr−1), but enhanced heterotrophic respiration (Rh; 7 ± 4.6 g…

Atmospheric Science010504 meteorology & atmospheric sciencesSoil Sciencechemistry.chemical_elementWeather and climateAquatic ScienceAtmospheric sciences01 natural sciences[SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/EcosystemsEcosystemPrecipitation0105 earth and related environmental sciencesWater Science and TechnologyEcologyPaleontologyBiospherePrimary productionForestry15. Life on landAridchemistryProductivity (ecology)13. Climate action[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/ClimatologyEnvironmental scienceCarbon
researchProduct

First Retrievals of ASCAT-IB VOD (Vegetation Optical Depth) at Global Scale

2021

Global and long-term vegetation optical depth (VOD) dataset are very useful to monitor the dynamics of the vegetation features, climate and environmental changes. In this study, the radar-based global ASCAT (Advanced SCATterometer) IB (INRAE-BORDEAUX) VOD was retrieved using a model which was recently calibrated over Africa. In order to assess the performance of IB VOD, the Saatchi biomass and three other VOD datasets (ASCAT V16, AMSR2 LPRM V5 and VODCA LPRM V6) derived from C-band observations were used in the comparison. The preliminary results show that IB VOD has a promising ability to predict biomass $(\mathrm{R}=0.74,\ \text{RMSE} =44.82\ \text{Mg}\ \text{ha}^{-1})$ , which is better …

Vegetation optical depth010504 meteorology & atmospheric sciencesvegetation mapping0211 other engineering and technologiesScale (descriptive set theory)02 engineering and technology01 natural sciencesCombinatoricsremote sensingvegetationoptical sensorC-bandComputingMilieux_MISCELLANEOUSattenuation021101 geological & geomatics engineering0105 earth and related environmental sciencesMathematicsprediction algorithmbiomassOrder (ring theory)15. Life on landPrediction algorithmsASCAT13. Climate action[SDE]Environmental SciencesVegetation optical DepthScatterometerBiomedical optical imagingRadar Measurement
researchProduct

Compensatory water effects link yearly global land CO2 sink changes to temperature

2017

Large interannual variations in the measured growth rate of atmospheric carbon dioxide (CO2) originate primarily from fluctuations in carbon uptake by land ecosystems1–3. It remains uncertain, however, to what extent temperature and water availability control the carbon balance of land ecosystems across spatial and temporal scales3–14. Here we use empirical models based on eddy covariance data15 and process-based models16,17 to investigate the effect of changes in temperature and water availability on gross primary productivity (GPP), terrestrial ecosystem respiration (TER) and net ecosystem exchange (NEE) at local and global scales. We find that water availability is the dominant driver of…

Carbon dioxide in Earth's atmospheregeographyMultidisciplinarygeography.geographical_feature_category010504 meteorology & atmospheric sciencesMeteorology0208 environmental biotechnologyEddy covarianceCarbon sink[PHYS.PHYS.PHYS-GEO-PH]Physics [physics]/Physics [physics]/Geophysics [physics.geo-ph]02 engineering and technology15. Life on landAtmospheric sciences01 natural sciencesSink (geography)020801 environmental engineeringCarbon cycle13. Climate action[SDE]Environmental SciencesEnvironmental scienceTerrestrial ecosystemEcosystemTemporal scalesComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciencesNature
researchProduct

Sources et puits de gaz à effet de serre (CO2, CH4, N2O) en prairie pâturée et stratégies de réduction

2004

National audience

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[INFO]Computer Science [cs][SHS] Humanities and Social Sciences[INFO] Computer Science [cs]ComputingMilieux_MISCELLANEOUS[SHS]Humanities and Social Sciences
researchProduct

Water-use efficiency and transpiration across European forests during the Anthropocene

2015

Considering the combined effects of CO2 fertilization and climate change drivers on plant physiology leads to a modest increase in simulated European forest transpiration in spite of the effects of CO2-induced stomatal closure. The Earth’s carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata1,2,3. However, uncertainties in the magnitude4,5,6 and consequences7,8 of the physiological responses9,10 of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage11. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven r…

hiilidioksidiStomatal conductancehiili[SDE.MCG]Environmental Sciences/Global Changesta1171vesiGrowing seasonClimate changeEnvironmental Science (miscellaneous)Atmospheric sciencestree-ringchemistry.chemical_compoundhydrologinen kiertodioxide[SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/Ecosystems[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/GeochemistrykasvitilmastoWater cycleWater-use efficiency[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces environmentclimateCO2 fertilizationComputingMilieux_MISCELLANEOUSTranspirationHydrologyilmakehäatmospheric CO2elevated CO2[CHIM.ORGA]Chemical Sciences/Organic chemistryGlobal warmingvarastointi15. Life on land[SDE.ES]Environmental Sciences/Environmental and Societygas-exchangerising CO2chemistry13. Climate actionstomatal conductance[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy[SHS.ENVIR]Humanities and Social Sciences/Environmental studiesCarbon dioxideEnvironmental scienceaineiden kiertoSocial Sciences (miscellaneous)carbon-isotope discrimination
researchProduct

Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales

2020

Summarization: The extent and impact of climate‐related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter‐Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events co…

010504 meteorology & atmospheric sciencesHYDROLOGICAL MODELSPopulation0207 environmental engineeringFLOOD RISKEnvironmental Sciences & Ecology02 engineering and technologySubtropics[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology01 natural sciencesPopulation densityLatitudeClimate-related extreme events/dk/atira/pure/sustainabledevelopmentgoals/climate_actionEarth and Planetary Sciences (miscellaneous)SDG 13 - Climate ActionMeteorology & Atmospheric SciencesBURNED AREAGLOBAL CROP PRODUCTIONGeosciences Multidisciplinary020701 environmental engineeringeducation0105 earth and related environmental sciencesGeneral Environmental ScienceEvent (probability theory)education.field_of_studyScience & TechnologyLand useGlobal warmingGlobal warmingVEGETATION MODEL ORCHIDEEGeology15. Life on landTERRESTRIAL CARBON BALANCE13. Climate actionClimatologyPhysical SciencesTROPICAL CYCLONE ACTIVITYHURRICANE INTENSITYEnvironmental scienceTropical cycloneINTERANNUAL VARIABILITYLife Sciences & BiomedicineEnvironmental SciencesINCORPORATING SPITFIRE
researchProduct

Alternate Inrae-Bordeaux VOD Indices from SMOS, AMSR2 and ASCAT: Overview of Recent Developments

2021

International audience; Vegetation optical depth (VOD) is used to parameterize microwave extinction effects within the vegetation layer. Many studies have showed VOD presents interesting features for applications in ecology, water and carbon cycles, and VOD is only marginally impacted by signal disturbances and artefacts from atmospheric, cloud and sun illumination effects. As soil moisture (and not VOD) has generally been the main factor of interest in retrieval studies from microwave observations, there is room for improvement in the retrieved VOD products. In this context, INRAE Bordeaux recently developed alternate VOD products from the SMOS, AMSR2 and ASCAT sensors, by addressing speci…

Spatial correlationVegetation optical depth[SDE.IE]Environmental Sciences/Environmental EngineeringEnvironmental scienceContext (language use)VegetationRemote sensingRadiometryMoistureRemote sensing2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
researchProduct

Evapotranspiration simulations in ISIMIP2a-Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets

2018

Actual land evapotranspiration (ET) is a key component of the global hydrological cycle and anessential variable determining the evolution of hydrological extreme events under different climate change scenarios. However, recently available ET products show persistent uncertainties thatare impeding a precise attribution of human-induced climate change. Here, we aim at comparing arange of independent global monthly land ET estimates with historical model simulations from theglobal water, agriculture, and biomes sectors participating in the second phase of the Inter-SectoralImpact Model Intercomparison Project (ISIMIP2a). Among the independent estimates, we use theEartH2Observe Tier-1 dataset …

PARAMETERIZATION010504 meteorology & atmospheric sciences0208 environmental biotechnologyREANALYSIS DATA02 engineering and technologyForcing (mathematics)01 natural sciencesISIMIP2aEnvironmental Science(all)Evapotranspirationddc:550Range (statistics)Cluster AnalysisMeteorology & Atmospheric SciencesWATERWater cycleuncertaintyGeneral Environmental ScienceUncertaintyVariance (accounting)Explained variationGLOBAL TERRESTRIAL EVAPOTRANSPIRATIONVariable (computer science)[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/ClimatologyClimatologyPhysical SciencesLife Sciences & BiomedicinePROJECTHYDROLOGICAL MODELSevapotranspirationClimate changeEnvironmental Sciences & EcologySOIL-MOISTUREhydrological extreme eventsLAND-SURFACE MODELhydrological extreme events ; cluster analysis ; uncertainty ; ISIMIP2a ; evapotranspiration[SDU.STU.HY]Sciences of the Universe [physics]/Earth Sciences/HydrologyHydrological extreme events0105 earth and related environmental sciencesScience & TechnologyRenewable Energy Sustainability and the EnvironmentPublic Health Environmental and Occupational HealthPOTENTIAL EVAPOTRANSPIRATION020801 environmental engineeringEarth sciencesISIMIP2a; evapotranspiration; uncertainty; cluster analysis; hydrological extreme events13. Climate actionEnvironmental scienceEnvironmental SciencesHIGH-RESOLUTIONcluster analysis
researchProduct

Global Scale IB AMSR2 Vegetation Optical Depth at X-Band

2021

Vegetation Optical Depth (VOD) plays an increasingly important role in studying global carbon, water and energy transformation [1], [2]. This study explores the performance of the X-MEB (X-band microwave emission of the biosphere) model at global scale. Similar to the L-MEB model, the X-MEB model, built by INRAE (Institut national de recherche pour l'agriculture, l'alimentation et l'environnement) Bordeaux, aims to retrieve VOD (referred to as IB X-VOD) at X-band. To avoid the ill-posed problem caused by retrieving two parameters of interest (soil moisture (SM) and VOD) from mono-angular and dual-polarized observations (AMSR2), which are strongly correlated, we used the ERA5 SM product as a…

Biomass (ecology)Scale (ratio)BiosphereEnvironmental scienceVegetationLeaf area indexAlbedoAtmospheric sciencesWater contentNormalized Difference Vegetation Index2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS
researchProduct

Land area fractions and population fractions exposed to extreme climate impact events derived from ISIMIP2b output data

2020

This dataset contains the land area fractions and population fractions exposed ('le' for land exposed and 'pe' for population exposed) to the following six extreme climate impact events: crop failures (lec/pec), drought (led/ped), heatwaves (leh/peh), river floods (ler/per), tropical cyclones (let/pet) and wildfire (lew/pew). It is the data behind Lange et al., 2020. The data are provided on a global 0.5° grid and in annual time steps. It was derived from multi-model climate impacts simulations generated within the second round (ISIMIP2b, https://www.isimip.org/protocol/2b, Frieler et al., 2017) of the Intersectoral Impact Model Intercomparison Project (ISIMIP, https://www.isimip.org). The …

EARTH SCIENCE > HUMAN DIMENSIONS > NATURAL HAZARDS > TROPICAL CYCLONESEARTH SCIENCE > HUMAN DIMENSIONS > NATURAL HAZARDS > FAMINEEARTH SCIENCE > HUMAN DIMENSIONS > NATURAL HAZARDS > WILDFIRESEARTH SCIENCE > HUMAN DIMENSIONS > NATURAL HAZARDS > HEATEARTH SCIENCE > HUMAN DIMENSIONS > NATURAL HAZARDS > FLOODSEARTH SCIENCE > HUMAN DIMENSIONS > NATURAL HAZARDS > DROUGHTS
researchProduct