0000000001322299

AUTHOR

M. Obergaulinger

showing 25 related works from this author

Core-Collapse Supernovae

2012

Progress of Theoretical and Experimental Physics, id. 01A309, (2012)
researchProduct

MHD Simulations of Non-rotating Stellar Core Collapse with Neutrinos

2012

ASP Conf. Ser., 459, 149 (2012)
researchProduct

Calibration of advanced Virgo and reconstruction of the gravitational wave signal h(t) during the observing run O2

2018

In August 2017, Advanced Virgo joined Advanced LIGO for the end of the O2 run, leading to the first gravitational waves detections with the three-detector network. This paper describes the Advanced Virgo calibration and the gravitational wave strain h(t) reconstruction during O2. The methods are the same as the ones developed for the initial Virgo detector and have already been described in previous publications, this paper summarizes the differences and emphasis is put on estimating systematic uncertainties. Three versions of the h(t) signal have been computed for the Virgo O2 run, an online version and two post-run reprocessed versions with improved detector calibration and reconstruction…

O2 observation runPhysics and Astronomy (miscellaneous)AstronomyAstrophysicsdetector: networkVIRGO: calibration01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics::Theorydetector: calibrationLIGOmirrorgravitational wavePhysicsQuantum Science & TechnologyPhysicsDetectorphotonAstrophysics::Instrumentation and Methods for AstrophysicsReconstruction algorithmMassless particleAmplitudeCalibration Advanced Virgo O2Physical SciencesCalibration[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Advanced VirgoAstrophysics - Instrumentation and Methods for Astrophysicson-linereconstructioninterferometergravitational wave calibration reconstruction photon calibrator Virgo O2 observation runPhysics MultidisciplinaryFOS: Physical sciencesO2General Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionParticle detectorGeneral Relativity and Quantum Cosmology0103 physical sciencesCalibrationcalibration; gravitational wave; O2 observation run; photon calibrator; reconstruction; Virgo; Physics and Astronomy (miscellaneous)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Science & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiationcalibration; gravitational wave; O2 observation run; photon calibrator; reconstruction; Virgocalibrationphoton calibratorLIGOgravitational radiation detectordetector: sensitivity* Automatic Keywords *network
researchProduct

Simulations of the Magneto-rotational Instability in Core-Collapse Supernovae

2009

We assess the importance of the magneto-rotational instability in core-collapse supernovae by an analysis of the growth rates of unstable modes in typical post-collapse systems and by numerical simulations of simplified models. The interplay of differential rotation and thermal stratification defines different instability regimes which we confirm in our simulations. We investigate the termination of the growth of the MRI by parasitic instabilities, establish scaling laws characterising the termination amplitude, and study the long-term evolution of the saturated turbulent state.

Astrophysics - Solar and Stellar AstrophysicsFOS: Physical sciencesSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

The CoCoNuT code: from neutron star oscillations to supernova explosions

2013

Highlights of Spanish Astrophysics VII (2013)
researchProduct

A method for computing synchrotron and inverse-Compton emission from hydrodynamic simulations of supernova remnants

2014

The observational signature of supernova remnants (SNRs) is very complex, in terms of both their geometrical shape and their spectral properties, dominated by non-thermal synchrotron and inverse-Compton scattering. We propose a post-processing method to analyse the broad-band emission of SNRs based on three-dimensional hydrodynamical simulations. From the hydrodynamical data, we estimate the distribution of non-thermal electrons accelerated at the shock wave and follow the subsequent evolution as they lose or gain energy by adiabatic expansion or compression and emit energy by radiation. As a first test case, we use a simulation of a bipolar supernova expanding into a cloudy medium. We find…

High Energy Astrophysical Phenomena (astro-ph.HE)Astrophysics - Solar and Stellar AstrophysicsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Termination of the MRI via parasitic instabilities in core-collapse supernovae: influence of numerical methods

2016

We study the influence of numerical methods and grid resolution on the termination of the magnetorotational instability (MRI) by means of parasitic instabilities in three-dimensional shearing-disc simulations reproducing typical conditions found in core-collapse supernovae. Whether or not the MRI is able to amplify weak magnetic fields in this context strongly depends, among other factors, on the amplitude at which its growth terminates. The qualitative results of our study do not depend on the numerical scheme. In all our models, MRI termination is caused by Kelvin-Helmholtz instabilities, consistent with theoretical predictions. Quantitatively, however, there are differences, but numerica…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)History010308 nuclear & particles physicsNumerical analysisFOS: Physical sciencesContext (language use)MechanicsGrid01 natural sciencesComputer Science ApplicationsEducationMagnetic fieldSupernovaAmplitudeAstrophysics - Solar and Stellar AstrophysicsMagnetorotational instability0103 physical sciencesConvergence (routing)Astrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)
researchProduct

Axisymmetric simulations of magnetorotational core collapse: approximate inclusion of general relativistic effects

2006

We continue our investigations of the magnetorotational collapse of stellar cores discussing simulations performed with a modified Newtonian gravitational potential that mimics general relativistic effects. The approximate TOV potential used in our simulations catches several features of fully relativistic simulations quite well. It is able to correctly reproduce the behavior of models which show a qualitative change both of the dynamics and the gravitational wave signal when switching from Newtonian to fully relativistic simulations. If this is not the case, the Newtonian and the approximate TOV models differ quantitatively. The collapse proceeds to higher densities with the approximate TO…

Shock waveMagnetohydrodynamics (MHD)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsAstrophysicsUNESCO::ASTRONOMÍA Y ASTROFÍSICAGravitational wavesGravitational potentialNewtonian fluidDifferential rotationPhysicsGravitational waveAstrophysics (astro-ph)Astronomy and AstrophysicsMechanicsNuclear matterStars:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia [UNESCO]Magnetic fieldSupernovaeSpace and Planetary ScienceMagnetic fieldsMagnetohydrodynamics (MHD) ; Gravitational waves ; Stars ; Magnetic fields ; SupernovaeUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogoniaRelativistic quantum chemistry:ASTRONOMÍA Y ASTROFÍSICA [UNESCO]
researchProduct

Magnetic field amplification in collapsing, non-rotating stellar cores

2011

Astronomy & Astrophysics, submitted (2011)
researchProduct

Nucleosynthesis in jet-driven and jet-associated supernovae

2023

In contrast to regular core-collapse supernovae, explosions of rapidly rotating massive stars can develop jets, fast collimated outflows directed along the rotational axis. Depending on the rate of rotation and the magnetic field strength before collapse as well as on possible mechanisms amplifying the magnetic field, such a core can explode magnetorotationally rather than via the standard supernova mechanism based on neutrino heating. This scenario can explain the highest kinetic energies observed in the class of hypernovae. On longer time scales, rotation and magnetic fields can play an important role in the engine of long gamma-ray burst powered by proto-magnetars or hyperaccreting black…

High Energy Astrophysical Phenomena (astro-ph.HE)FOS: Physical sciencesAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network

2019

Gravitational wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event was detected in this sear…

binary: massneutron star: binaryAstronomybinary: angular momentumAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsLIMITSclustersLIGOgravitational waveGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01black hole: spinPhysicsintermediate mass black hole binarieNumerical relativityGeneral relativitygravitational wavesgravitational waves; intermediate mass black hole binaries; Advanced LIGO and VirgoPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenastarsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalternative theories of gravitySTARS; CLUSTERS; LIMITSAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black hole0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsSTFCScience & Technology010308 nuclear & particles physicsGravitational waveAdvanced LIGO and Virgointermediate mass black hole binariesRCUKGravitational Wave Physicsblack hole: massMass ratiobinary: compact04.80.NnLIGOgravitational radiation detectorNeutron starVIRGOblack hole: binaryIntermediate-mass black holerelativity theorygravitational radiation: emission95.55.Ymmass ratioDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik07.05.Kflimits[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]CLUSTERSSTARSGravitational waves Black holes (astronomy) Gravitational self force
researchProduct

Interpreting Observations of GRBs with Numerical Simulations

2013

ASP Conf. Proceedings, 474, 33 (2013)
researchProduct

Hydromagnetic instabilities and magnetic field amplification in core collapse supernovae

2011

Some of the most violent events in the universe, the gamma ray burst, could be related to the gravitational collapse of massive stellar cores. The recent association of long GRBs to some class of type Ic supernova seems to support this view. In such scenario fast rotation, strong magnetic fields and general relativistic effects are key ingredients. It is thus important to understand the mechanism that amplifies the magnetic field under that conditions. I present global simulations of the magneto-rotational collapse of stellar cores in general relativity and semi-global simulations of hydromagnetic instabilities under core collapse conditions. I discuss effect of the magneto-rotational insta…

PhysicsHistory010308 nuclear & particles physicsGeneral relativityAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subjectAstronomyCollapse (topology)Astrophysics01 natural sciencesUniverseComputer Science ApplicationsEducationMagnetic fieldSupernovaTheory of relativity13. Climate action0103 physical sciencesGravitational collapseGamma-ray burst010303 astronomy & astrophysicsmedia_commonJ. of Phys. Conf. Ser., 314, 012079 (2011)
researchProduct

Magnetorotational core collapse of possible GRB progenitors – I. Explosion mechanisms

2019

We investigate the explosion of stars with zero-age main-sequence masses between 20 and 35 solar masses and varying degrees of rotation and magnetic fields including ones commonly considered progenitors of gamma-ray bursts (GRBs). The simulations, combining special relativistic magnetohydrodynamics, a general relativistic approximate gravitational potential, and two-moment neutrino transport, demonstrate the viability of different scenarios for the post-bounce evolution. Having formed a highly massive proto-neutron star (PNS), several models launch successful explosions, either by the standard supernova mechanism based on neutrino heating and hydrodynamic instabilities or by magnetorotation…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSolar massAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRam pressureBlack holeSupernovaGravitational potentialSpace and Planetary ScienceNeutrinoMagnetohydrodynamicsAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burstMonthly Notices of the Royal Astronomical Society
researchProduct

Local simulations of the magnetized Kelvin-Helmholtz instability in neutron-star mergers

2010

Context. Global MHD simulations show Kelvin-Helmholtz (KH) instabilities at the contact surface of two merging neutron stars. That region has been identified as the site of efficient amplification of magnetic fields. However, these global simulations, due to numerical limitations, were unable to determine the saturation level of the field strength, and thus the possible back-reaction of the magnetic field onto the flow. Aims. We investigate the amplification of initially weak fields in KH unstable shear flows, and the back-reaction of the field onto the flow. Methods. We use a high-resolution ideal MHD code to perform 2D and 3D local simulations of shear flows. Results. In 2D, the magnetic …

Magnetohydrodynamics (MHD)Field (physics):ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Otras [UNESCO]FOS: Physical sciencesField strengthAstrophysicsMagnetohydrodynamics (MHD); Instabilities; Turbulence; Stars : neutron; Gamma; Ray burst : generalUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::OtrasGammageneral [Ray burst]Solar and Stellar Astrophysics (astro-ph.SR)Equipartition theoremPhysicsAstronomy and Astrophysicsneutron [Stars]MechanicsVortexMagnetic fieldShear (sheet metal)TurbulenceAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceInstabilitiesUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::EstrellasMagnetohydrodynamicsShear flow:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellas [UNESCO]
researchProduct

Simulations of core collapse using two-moment neutrino transport

2012

Poster at the conference Supernovae Illuminating the Universe: from Individuals to Populations .
researchProduct

Spectral multi-flavour neutrino transport for sipernova simulations

2014

ASP Conf. Proceedings (2013)
researchProduct

Semi-global simulations of the magneto-rotational instability in core collapse supernovae

2009

Possible effects of magnetic fields in core collapse supernovae rely on an efficient amplification of the weak pre-collapse fields. It has been suggested that the magneto-rotational instability (MRI) leads to rapid field growth. Although MRI studies exist for accretion discs, the application of their results to core collapse supernovae is inhibited as the physics of supernova cores is substantially different from that of accretion discs. We address the problem of growth and saturation of the MRI by means of semi-global simulations, which combine elements of global and local simulations by taking the presence of global background gradients into account and using a local computational grid. W…

PhysicsResistive touchscreenMagnetohydrodynamics (MHD):ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Otras [UNESCO]Astrophysics (astro-ph)supernovae : general [Stars]magnetic fields [Stars]FOS: Physical sciencesAstronomy and AstrophysicsAngular velocityMechanicsAstrophysicsMagnetohydrodynamics (MHD); Instabilities; Stars : supernovae : general; Stars : magnetic fieldsAstrophysicsInstabilityMagnetic fieldSupernovaAmplitudeSpace and Planetary ScienceDispersion relationInstabilitiesUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::OtrasUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::EstrellasSaturation (chemistry):ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellas [UNESCO]
researchProduct

Powering Short GRBs by Mergers of Moderately Magnetized Neutron Stars

2012

ASP Conf. Ser., 459, 49 (2012)
researchProduct

Protomagnetar and black hole formation in high-mass stars

2017

Using axisymmetric simulations coupling special relativistic MHD, an approximate post-Newtonian gravitational potential and two-moment neutrino transport, we show different paths for the formation of either protomagnetars or stellar mass black holes. The fraction of prototypical stellar cores which should result in collapsars depends on a combination of several factors, among which the structure of the progenitor star and the profile of specific angular momentum are probably the foremost. Along with the implosion of the stellar core, we also obtain supernova-like explosions driven by neutrino heating and hydrodynamic instabilities or by magneto-rotational effects in cores of high-mass stars…

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSupermassive black holeStellar mass010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaStellar collisionX-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsCompact star01 natural sciencesAstrophysics - Solar and Stellar AstrophysicsBinary black holeSpace and Planetary ScienceIntermediate-mass black hole0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsStellar black holeAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsMonthly Notices of the Royal Astronomical Society: Letters
researchProduct

Numerical viscosity in simulations of the two-dimensional Kelvin-Helmholtz instability

2020

The Kelvin-Helmholtz instability serves as a simple, well-defined setup for assessing the accuracy of different numerical methods for solving the equations of hydrodynamics. We use it to extend our previous analysis of the convergence and the numerical dissipation in models of the propagation of waves and in the tearing-mode instability in magnetohydrodynamic models. To this end, we perform two-dimensional simulations with and without explicit physical viscosity at different resolutions. A comparison of the growth of the modes excited by our initial perturbations allows us to estimate the effective numerical viscosity of two spatial reconstruction schemes (fifth-order monotonicity preservin…

PhysicsHistoryNumerical analysisFOS: Physical sciences010103 numerical & computational mathematicsMechanicsComputational Physics (physics.comp-ph)Dissipation01 natural sciencesInstabilityComputer Science ApplicationsEducationPiecewise linear functionViscositySimple (abstract algebra)0103 physical sciencesConvergence (routing)Magnetohydrodynamic drive0101 mathematicsAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Physics - Computational Physics010303 astronomy & astrophysicsJournal of Physics: Conference Series
researchProduct

Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo

2019

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 10-6 (modeled) and 3.1 10-4 (unmodeled). We do not find any significant evidence for gravitational-wave signals associate…

Burst astrophysicAstrofísicaneutron star: binary010504 meteorology & atmospheric sciencesBinary numberAstrophysics01 natural sciencesLIGOQCSUPERNOVArelativistic jetsQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01counterpartGRBGravitational waves (678)Physical SciencesRELATIVISTIC JETSAstrophysics - High Energy Astrophysical PhenomenaGravitational waveGravitationstarsblack-holeAstrophysics::High Energy Astrophysical PhenomenaGeneral Relativity and Quantum Cosmology (gr-qc)precursor activityGravitational wavesSettore FIS/05 - Astronomia e AstrofisicasupernovaCORE-COLLAPSEGamma-ray burstGravitational wave sourcesScience & TechnologyVirgoRCUKAstronomy and AstrophysicsHigh energy astrophysics (739)RedshiftDewey Decimal Classification::500 | Naturwissenschaften::520 | Astronomie Kartographiedetector: sensitivityVIRGOSpace and Planetary Sciencegravitational radiation: emissionBLACK-HOLEddc:520Gravitational wave astronomyGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]STARSGravitacióAstronomySignalGeneral Relativity and Quantum CosmologyBurst astrophysicslocalizationemission010303 astronomy & astrophysicsPhysicsDetectorGamma-ray bursts (629)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sourcePRECURSOR ACTIVITYGamma-ray burstsLIGO (920)High energy astrophysicsdata analysis methodBurst astrophysics (187)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstAstronomy & AstrophysicsMASSgravitational radiation: direct detectionGravitational wave astronomy Gravitational wave sources LIGO; Gravitational waves Gamma-ray bursts Burst astrophysics High energy astrophysicsGravitational wave astronomy (675)electromagnetic field: production0103 physical sciencesnumerical calculationsGRB; gravitational waves; LIGO; VirgoSTFC0105 earth and related environmental sciencesgravitational wavesneutron starsGravitational waveCOUNTERPARTgravitational radiationLIGOcore-collapsegravitational radiation detectorGravitational wave sources (677)radiationNeutron starPhysics and AstronomymassRADIATIONEMISSIONGravitational wave astronomy; Gravitational wave sources; LIGO; Gravitational waves; Gamma-ray bursts; Burst astrophysics; High energy astrophysics
researchProduct

A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing R…

2019

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact-binary coalescence searches using the Fermi Gamma-ray Burst Monitor (GBM), leveraging its all-sky and broad energy coverage. Candidates are ranked and compared to background to measure signific…

AstrofísicaGravitacióAstronomyAstrophysics::High Energy Astrophysical Phenomenagamma-ray burst: generalFOS: Physical sciencesAstrophysicsAstronomy & Astrophysicsgeneral [gamma-ray burst]01 natural sciencesCoincidenceCoincident0103 physical sciences010306 general physics010303 astronomy & astrophysicsgravitational waveSTFCQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEScience & TechnologySolar flareGravitational wavegamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceRCUKAstronomy and AstrophysicsAstronomy and AstrophysicLIGOPhysics and Astronomygravitational wavesSpace and Planetary SciencePhysical Sciencesgamma-ray burst: general; gravitational wavesgeneral; gravitational waves; Astronomy and Astrophysics; Space and Planetary Science [gamma-ray burst]False alarmAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Fermi Gamma-ray Space Telescope
researchProduct

High-order methods for the simulation of hydromagnetic instabilities in core-collapse supernovae

2011

AbstractWe present an assessment of the accuracy of a recently developed MHD code used to study hydromagnetic flows in supernovae and related events. The code, based on the constrained transport formulation, incorporates unprecedented ultra-high-order methods (up to 9th order) for the reconstruction and the most accurate approximate Riemann solvers. We estimate the numerical resistivity of these schemes in tearing instability simulations.

PhysicsAstronomy and Astrophysics010103 numerical & computational mathematics01 natural sciencesInstabilityRiemann solverNumerical resistivity010305 fluids & plasmasComputational physicsRoe solverSupernovasymbols.namesakeRiemann problemSpace and Planetary Science0103 physical sciencesTearingsymbols0101 mathematicsMagnetohydrodynamicsProceedings of the International Astronomical Union
researchProduct

Search for GW signals associated with GRBs

2021

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38x10^-6^ (modeled) and 3.1x10^-4^ (unmodeled). We do not find any significant evidence for gravitational-wave signals assoc…

Astrophysics and AstronomyGamma-ray astronomyhigh energy astrophysicsAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstellar astronomyGamma ray burstsGravitational wavesCosmologyobservational astronomyGamma ray astronomyGamma-ray burstsAstrophysical ProcessesNatural Sciences
researchProduct