0000000001322461

AUTHOR

M. Scheel

showing 19 related works from this author

Search for relativistic magnetic monopoles with IceCube

2012

We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km$^{3}$. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km$^{3}$ of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of $\Phi_{\mathrm{90%C.L.}}\sim 3\e{-18}\fluxunits$ for $\beta\geq0.8$. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost $\gamma$ below $10^{7}$. This result is then interpreted for a wide range of mass …

FLUXSELECTIONAMANDANuclear and High Energy PhysicsParticle physicsProton decayCherenkov detectorPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaMagnetic monopoleFOS: Physical sciencesddc:500.201 natural scienceslaw.inventionIceCube Neutrino ObservatoryPhysics::GeophysicsIceCubelaw0103 physical sciencesGrand Unified Theoryddc:530NEUTRINO TELESCOPE010306 general physicsCherenkov radiationPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsFIELDS85-05Physics and AstronomyNeutrino detectorAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Cosmic ray composition and energy spectrum from 1–30 PeV using the 40-string configuration of IceTop and IceCube

2012

Astroparticle physics 42, 15 - 32 (2013). doi:10.1016/j.astropartphys.2012.11.003

Knee regionAstrophysicsTracking (particle physics)01 natural sciencesParticle identificationIceCubeTRACKINGWATERCherenkovNeutrino energyNEUTRINO TELESCOPEUltra-high-energy cosmic rayHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSEADetectorAstrophysics::Instrumentation and Methods for AstrophysicsLIGHTComposition; Cosmic rays; Energy spectrum; IceCube; IceTop; Knee regionddc:540IceTopPARTICLE IDENTIFICATIONAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsIceCube detectorCompositionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayddc:500.2IceCube Neutrino ObservatorySEARCHESAccelerationcosmic raysdE/dx0103 physical sciences010306 general physicsDETECTORInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationTruncated meanMuon energy010308 nuclear & particles physicsAstronomyAstronomy and Astrophysics540Physics and AstronomycompositionEnergy SpectrumTEVEnergy spectrum
researchProduct

First Observation of PeV-Energy Neutrinos with IceCube

2013

We report on the observation of two neutrino-induced events which have an estimated deposited energy in the IceCube detector of 1.04 $\pm$ 0.16 and 1.14 $\pm$ 0.17 PeV, respectively, the highest neutrino energies observed so far. These events are consistent with fully contained particle showers induced by neutral-current $\nu_{e,\mu,\tau}$ ($\bar\nu_{e,\mu,\tau}$) or charged-current $\nu_{e}$ ($\bar\nu_{e}$) interactions within the IceCube detector. The events were discovered in a search for ultra-high energy neutrinos using data corresponding to 615.9 days effective livetime. The expected number of atmospheric background is $0.082 \pm 0.004 \text{(stat)}^{+0.041}_{-0.057} \text{(syst)}$. T…

SELECTIONParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)ATMOSPHERIC MUONAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and AstronomyFluxCosmic rayddc:500.201 natural sciencesCHARMIceCube Neutrino Observatory0103 physical sciencesddc:550SCATTERING010303 astronomy & astrophysicsCharged currentHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSPECTRUMNeutral current010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyICEGlashow resonancePERFORMANCE3. Good healthPhysics and AstronomyHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaSYSTEMAstrophysics - Cosmology and Nongalactic AstrophysicsBar (unit)
researchProduct

Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory

2013

Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies above ~500 GeV at the surface, which provides an efficient veto system for hadronic air showers with energies above 1 PeV. One year of data from the 40-string IceCube configuration was used to perform a search for point sources and a Galactic diffuse signal. No sources were found, resulting in a 90% C.L. upper limit on the ratio of gamma rays to cosmic rays of 1.2 x 10^(-3)for the flux coming from …

Nuclear and High Energy PhysicsTELESCOPEPoint sourcePhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysicsddc:500.201 natural sciences7. Clean energyIceCube Neutrino ObservatoryIceCubeHESS0103 physical sciencesddc:530MILAGRO010306 general physics010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuonGamma rayAstrophysics::Instrumentation and Methods for AstrophysicsPLANEGalactic planeAir showerPhysics and Astronomy13. Climate actionDISCOVERYMilagroMOLECULAR CLOUDSTEVRADIATIONHigh Energy Physics::ExperimentAstrophysics - High Energy Astrophysical PhenomenaEMISSION
researchProduct

Observation of the cosmic-ray shadow of the Moon with IceCube

2013

We report on the observation of a significant deficit of cosmic rays from the direction of the Moon with the IceCube detector. The study of this "Moon shadow" is used to characterize the angular resolution and absolute pointing capabilities of the detector. The detection is based on data taken in two periods before the completion of the detector: between April 2008 and May 2009, when IceCube operated in a partial configuration with 40 detector strings deployed in the South Pole ice, and between May 2009 and May 2010 when the detector operated with 59 strings. Using two independent analysis methods, the Moon shadow has been observed to high significance (> 6 sigma) in both detector config…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesNEUTRINO TELESCOPESPosition (vector)SEARCH0103 physical sciencesShadowAngular resolutionddc:530ARRIVAL DIRECTIONS010303 astronomy & astrophysicsDETECTORAnalysis methodHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsANISOTROPY010308 nuclear & particles physicsDetectorSUNAstronomyANGULAR RESOLUTIONEarth's magnetic fieldDeflection (physics)Physics and AstronomyAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network

2019

Gravitational wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event was detected in this sear…

binary: massneutron star: binaryAstronomybinary: angular momentumAstrophysicsdetector: network01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsLIMITSclustersLIGOgravitational waveGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)QCQBastro-ph.HEPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01black hole: spinPhysicsintermediate mass black hole binarieNumerical relativityGeneral relativitygravitational wavesgravitational waves; intermediate mass black hole binaries; Advanced LIGO and VirgoPhysical Sciences[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Astrophysics - High Energy Astrophysical PhenomenastarsGeneral relativitygr-qcAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesalternative theories of gravitySTARS; CLUSTERS; LIMITSAstrophysics::Cosmology and Extragalactic AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionGeneral Relativity and Quantum CosmologySettore FIS/05 - Astronomia e AstrofisicaBinary black hole0103 physical sciencesddc:530010306 general physicsAstrophysics::Galaxy AstrophysicsSTFCScience & Technology010308 nuclear & particles physicsGravitational waveAdvanced LIGO and Virgointermediate mass black hole binariesRCUKGravitational Wave Physicsblack hole: massMass ratiobinary: compact04.80.NnLIGOgravitational radiation detectorNeutron starVIRGOblack hole: binaryIntermediate-mass black holerelativity theorygravitational radiation: emission95.55.Ymmass ratioDewey Decimal Classification::500 | Naturwissenschaften::530 | Physik07.05.Kflimits[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]CLUSTERSSTARSGravitational waves Black holes (astronomy) Gravitational self force
researchProduct

All-particle cosmic ray energy spectrum measured with 26 IceTop stations

2012

Astroparticle physics 44, 40 - 58 (2013). doi:10.1016/j.astropartphys.2013.01.016

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayddc:500.2Astrophysics01 natural sciencesIceCubeIceCube Neutrino Observatory0103 physical sciencesCosmic rays010303 astronomy & astrophysicsZenithPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Cosmic rays; Energy spectrum; IceCube; IceTopSpectral indexCOSMIC cancer database010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysics540Air showerKASCADEddc:540IceTopEnergy spectrumNeutrinoAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Measurement of the Atmospheric ve flux in IceCube

2012

We report the first measurement of the atmospheric electron neutrino flux in the energy range between approximately 80 GeV and 6 TeV, using data recorded during the first year of operation of IceCube's DeepCore low energy extension. Techniques to identify neutrinos interacting within the DeepCore volume and veto muons originating outside the detector are demonstrated. A sample of 1029 events is observed in 281 days of data, of which 496 $\pm$ 66(stat.) $\pm$ 88(syst.) are estimated to be cascade events, including both electron neutrino and neutral current events. The rest of the sample includes residual backgrounds due to atmospheric muons and charged current interactions of atmospheric muo…

DEEPCOREParticle physicsAMANDAPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and Astronomyddc:500.201 natural sciences7. Clean energyHigh Energy Physics - ExperimentNuclear physicsSEARCH0103 physical sciencesddc:550010306 general physicsNeutrino oscillationDETECTORPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologySolar neutrino problemCosmic neutrino backgroundNeutrino detectorPhysics and Astronomy13. Climate actionMeasurements of neutrino speedHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoNEUTRINO-INDUCED CASCADESAstrophysics - High Energy Astrophysical PhenomenaPhysical Review Letters
researchProduct

Measurement of Atmospheric Neutrino Oscillations with IceCube

2013

We present the first statistically significant detection of neutrino oscillations in the high-energy regime ($>$ 20 GeV) from an analysis of IceCube Neutrino Observatory data collected in 2010-2011. This measurement is made possible by the low energy threshold of the DeepCore detector ($\sim 20$ GeV) and benefits from the use of the IceCube detector as a veto against cosmic ray-induced muon background. The oscillation signal was detected within a low-energy muon neutrino sample (20 -- 100 GeV) extracted from data collected by DeepCore. A high-energy muon neutrino sample (100 GeV -- 10 TeV) was extracted from IceCube data to constrain systematic uncertainties. Disappearance of low-energy upw…

Particle physicsTELESCOPEPhysics::Instrumentation and DetectorsSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesGeneral Physics and Astronomyddc:500.201 natural sciencesHigh Energy Physics - ExperimentIceCubeIceCube Neutrino ObservatoryHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesddc:550Muon neutrino010306 general physicsNeutrino oscillationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyPERFORMANCESolar neutrino problem3. Good healthPhysics and AstronomyNeutrino detector13. Climate actionHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaSYSTEM
researchProduct

An improved method for measuring muon energy using the truncated mean of dE/dx

2012

Nuclear instruments & methods in physics research / A 703, 190 - 198 (2013). doi:10.1016/j.nima.2012.11.081

Nuclear and High Energy PhysicsParticle physicsPhysics::Instrumentation and DetectorsFOS: Physical sciencesddc:500.2Cherenkov; dE/dx; IceCube detector; Muon energy; Neutrino energy; Truncated mean53001 natural sciencesParticle detectorParticle identificationNuclear physicsdE/dx0103 physical sciencesSpecific energyddc:530CherenkovNeutrino energyInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsInstrumentationCherenkov radiationHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsMuonTruncated meanMuon energy010308 nuclear & particles physicsDE/dxPhysics - Data Analysis Statistics and ProbabilityScintillation counterHigh Energy Physics::ExperimentNeutrinoIceCube detectorAstrophysics - High Energy Astrophysical PhenomenaAstrophysics - Instrumentation and Methods for AstrophysicsData Analysis Statistics and Probability (physics.data-an)Lepton
researchProduct

South Pole glacial climate reconstruction from multi-borehole laser particulate stratigraphy

2013

AbstractThe IceCube Neutrino Observatory and its prototype, AMANDA, were built in South Pole ice, using powerful hot-water drills to cleanly bore>100 holes to depths up to 2500 m. The construction of these particle physics detectors provided a unique opportunity to examine the deep ice sheet using a variety of novel techniques. We made high-resolution particulate profiles with a laser dust logger in eight of the boreholes during detector commissioning between 2004 and 2010. The South Pole laser logs are among the most clearly resolved measurements of Antarctic dust strata during the last glacial period and can be used to reconstruct paleoclimate records in exceptional detail. Here we use…

EPICA-DOME-C010504 meteorology & atmospheric sciencesDEEP ICEBoreholeAntarctic ice sheetDUSTddc:500.2ANTARCTIC ICE-SHEET01 natural sciencesIceCube Neutrino ObservatoryIceCubePaleontology0103 physical sciencesPaleoclimatologyddc:550COREGlacial period010303 astronomy & astrophysicsSIPLE DOME0105 earth and related environmental sciencesEarth-Surface Processesgeographygeography.geographical_feature_categoryEAST ANTARCTICAVOLCANIC WINTERVOSTOKOPTICAL-PROPERTIESStratigraphy13. Climate actionEarth and Environmental SciencesRadiometric datingIce sheetphysicsGeology
researchProduct

Search for Gravitational Waves Associated with Gamma-Ray Bursts Detected by Fermi and Swift during the LIGO-Virgo Run O3a

2022

Abbott, R., et al. (LIGO and VIRGO Collaboration)

neutron star: binaryGravitational waves(678)ELECTROMAGNETIC COUNTERPARTSBinary numberAstrophysics01 natural sciencesLIGOHigh-Energy Phenomena and Fundamental PhysicsQCSUPERNOVAQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01education.field_of_study[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Black holesSettore FIS/0506 humanities and the artsGRBEnergy InjectionSearch for gravitational wave transients associated to GRBs - Fermi and Swift satellitesAFTERGLOWPhysical SciencesRELATIVISTIC JETSAstrophysics - High Energy Astrophysical PhenomenaSwiftGravitational waveBlack-Hole330Evolutiongr-qcGamma Ray Burst LIGO Virgo Gravitational WavesAstrophysics::High Energy Astrophysical PhenomenaGeneral Relativity and Quantum Cosmology (gr-qc)0603 philosophy ethics and religionGravitational-wave astronomyNeutron starsENERGY INJECTIONCORE-COLLAPSEeducationGamma-ray burstScience & TechnologyCore-CollapseVirgoRCUKAstronomy and AstrophysicstriggerLuminosity FunctionDewey Decimal Classification::500 | Naturwissenschaften::520 | Astronomie KartographieGamma Ray BurstSpace and Planetary ScienceBLACK-HOLEddc:520gravitational wave astronomyGravitational wave astronomyGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]LIGO(920)Fermi Gamma-ray Space TelescopeAstronomyAstrophysicsGeneral Relativity and Quantum Cosmologyneutron starsENERGYGravitational wave detectorsGamma-ray bursts(629)Neutron Stars Mergers Gravitational Waves010303 astronomy & astrophysicsgravitational waves; gamma ray bursts; LIGO; Virgo; Fermi; SwiftCompact binary stars(283)astro-ph.HEPhysicscompact binary starsgamma-ray burstsgamma-ray bursts ; gravitational waves; LIGO; Virgogravitational waves060302 philosophy[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]PRECURSOR ACTIVITYGravitational wave astronomy(675)Gamma-ray burstsGW_HIGHLIGHT[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PopulationCompact binary starssatelliteFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & Astrophysicsgamma ray: burstMASS1STGLASTGamma-ray bursts; Gravitational wave astronomy; Gravitational waves; Gravitational wave detectors0103 physical sciencesSTFCFermigravitational waves; gamma-ray bursts; LIGO; Virgo; Fermi; SwiftGravitational wavegravitational radiationgamma ray burstsgamma-ray burts--black holesLIGOEVOLUTIONOBSERVING RUNNeutron stars(1108)Neutron starPhysics and Astronomy[SDU]Sciences of the Universe [physics]LUMINOSITY FUNCTIONBlack holes(162)INJECTIONEMISSION
researchProduct

IceTop : the surface component of IceCube

2012

IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km2. The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an …

FLUXNuclear and High Energy PhysicsAir showerPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaAir shower; Cosmic rays; Detector; IceCube; IceTopFOS: Physical sciencesCosmic rayddc:500.27. Clean energy01 natural sciencesIceCube Neutrino ObservatoryIceCubeShowerData acquisitioncosmic raysDIGITIZATION0103 physical sciencesSHOWERSCalibrationddc:530Instrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsInstrumentationCosmic raysRemote sensingPhysicsMuondetector010308 nuclear & particles physicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyDetectorENERGY-SPECTRUMAir showerPhysics and AstronomySIMULATIONIceTopHigh Energy Physics::ExperimentAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

Measurement of South Pole ice transparency with the IceCube LED calibration system

2013

The IceCube Neutrino Observatory, approximately 1 km^3 in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report presents a new method of fitting the model of light propagation in the ice to a data set of in-situ light source events collected with IceCube. The resulting set of derived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presented and a comparison of IceCube …

Nuclear and High Energy PhysicsPhysics - Instrumentation and DetectorsSouth Pole icePhoton progagationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsddc:500.201 natural sciencesHigh Energy Physics - ExperimentIceCube Neutrino ObservatoryIceCubePhysics::GeophysicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesCalibrationddc:53014. Life underwater010306 general physicsAbsorption (electromagnetic radiation)InstrumentationInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationRemote sensingPhysicsOptical properties010308 nuclear & particles physicsScatteringDetectorAstrophysics::Instrumentation and Methods for AstrophysicsIceCube; Optical properties; Photon propagation; South Pole iceSouth PoleiceInstrumentation and Detectors (physics.ins-det)Charged particleData setPhoton propagationAstrophysics - Instrumentation and Methods for AstrophysicsNuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
researchProduct

Search for Gravitational-wave Signals Associated with Gamma-Ray Bursts during the Second Observing Run of Advanced LIGO and Advanced Virgo

2019

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38 10-6 (modeled) and 3.1 10-4 (unmodeled). We do not find any significant evidence for gravitational-wave signals associate…

Burst astrophysicAstrofísicaneutron star: binary010504 meteorology & atmospheric sciencesBinary numberAstrophysics01 natural sciencesLIGOQCSUPERNOVArelativistic jetsQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01counterpartGRBGravitational waves (678)Physical SciencesRELATIVISTIC JETSAstrophysics - High Energy Astrophysical PhenomenaGravitational waveGravitationstarsblack-holeAstrophysics::High Energy Astrophysical PhenomenaGeneral Relativity and Quantum Cosmology (gr-qc)precursor activityGravitational wavesSettore FIS/05 - Astronomia e AstrofisicasupernovaCORE-COLLAPSEGamma-ray burstGravitational wave sourcesScience & TechnologyVirgoRCUKAstronomy and AstrophysicsHigh energy astrophysics (739)RedshiftDewey Decimal Classification::500 | Naturwissenschaften::520 | Astronomie Kartographiedetector: sensitivityVIRGOSpace and Planetary Sciencegravitational radiation: emissionBLACK-HOLEddc:520Gravitational wave astronomyGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]STARSGravitacióAstronomySignalGeneral Relativity and Quantum CosmologyBurst astrophysicslocalizationemission010303 astronomy & astrophysicsPhysicsDetectorGamma-ray bursts (629)[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Gravitational wave sourcePRECURSOR ACTIVITYGamma-ray burstsLIGO (920)High energy astrophysicsdata analysis methodBurst astrophysics (187)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsgamma ray: burstAstronomy & AstrophysicsMASSgravitational radiation: direct detectionGravitational wave astronomy Gravitational wave sources LIGO; Gravitational waves Gamma-ray bursts Burst astrophysics High energy astrophysicsGravitational wave astronomy (675)electromagnetic field: production0103 physical sciencesnumerical calculationsGRB; gravitational waves; LIGO; VirgoSTFC0105 earth and related environmental sciencesgravitational wavesneutron starsGravitational waveCOUNTERPARTgravitational radiationLIGOcore-collapsegravitational radiation detectorGravitational wave sources (677)radiationNeutron starPhysics and AstronomymassRADIATIONEMISSIONGravitational wave astronomy; Gravitational wave sources; LIGO; Gravitational waves; Gamma-ray bursts; Burst astrophysics; High energy astrophysics
researchProduct

Search for ultrahigh-energy tau neutrinos with IceCube

2012

The first dedicated search for ultrahigh-energy (UHE) tau neutrinos of astrophysical origin was performed using the IceCube detector in its 22-string configuration with an instrumented volume of roughly 0.25  km3. The search also had sensitivity to UHE electron and muon neutrinos. After application of all selection criteria to approximately 200 live-days of data, we expect a background of 0.60±0.19(stat)+0.56−0.58(syst) events and observe three events, which after inspection, emerge as being compatible with background but are kept in the final sample. Therefore, we set an upper limit on neutrinos of all flavors from UHE astrophysical sources at 90% C.L. of E2νΦ90(νx)&lt;16.3×10−8  GeV cm−2…

SELECTIONAMANDANuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaINDUCED CASCADESCosmic rayddc:500.2PROPAGATIONAstrophysicsElectron01 natural sciencesAmanda0103 physical sciencesEARTHddc:530Ultrahigh energy010306 general physicsPropagationSelectionPhysicsRange (particle radiation)Muon010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsEarthPhysics and AstronomyInduced CascadesTELESCOPESHigh Energy Physics::ExperimentNeutrinoTelescopes
researchProduct

A Fermi Gamma-Ray Burst Monitor Search for Electromagnetic Signals Coincident with Gravitational-wave Candidates in Advanced LIGO's First Observing R…

2019

We present a search for prompt gamma-ray counterparts to compact binary coalescence gravitational wave (GW) candidates from Advanced LIGO's first observing run (O1). As demonstrated by the multimessenger observations of GW170817/GRB 170817A, electromagnetic and GW observations provide complementary information about the astrophysical source and, in the case of weaker candidates, may strengthen the case for an astrophysical origin. Here we investigate low-significance GW candidates from the O1 compact-binary coalescence searches using the Fermi Gamma-ray Burst Monitor (GBM), leveraging its all-sky and broad energy coverage. Candidates are ranked and compared to background to measure signific…

AstrofísicaGravitacióAstronomyAstrophysics::High Energy Astrophysical Phenomenagamma-ray burst: generalFOS: Physical sciencesAstrophysicsAstronomy & Astrophysicsgeneral [gamma-ray burst]01 natural sciencesCoincidenceCoincident0103 physical sciences010306 general physics010303 astronomy & astrophysicsgravitational waveSTFCQCQBHigh Energy Astrophysical Phenomena (astro-ph.HE)Settore FIS/01Physicsastro-ph.HEScience & TechnologySolar flareGravitational wavegamma-ray burst: general; gravitational waves; Astronomy and Astrophysics; Space and Planetary ScienceRCUKAstronomy and AstrophysicsAstronomy and AstrophysicLIGOPhysics and Astronomygravitational wavesSpace and Planetary SciencePhysical Sciencesgamma-ray burst: general; gravitational wavesgeneral; gravitational waves; Astronomy and Astrophysics; Space and Planetary Science [gamma-ray burst]False alarmAstrophysics - High Energy Astrophysical PhenomenaGamma-ray burst[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Fermi Gamma-ray Space Telescope
researchProduct

Search for Dark Matter Annihilations in the Sun with the 79-String IceCube Detector

2012

We have performed a search for muon neutrinos from dark matter annihilation in the center of the Sun with the 79-string configuration of the IceCube neutrino telescope. For the first time, the DeepCore sub-array is included in the analysis, lowering the energy threshold and extending the search to the austral summer. The 317 days of data collected between June 2010 and May 2011 are consistent with the expected background from atmospheric muons and neutrinos. Upper limits are therefore set on the dark matter annihilation rate, with conversions to limits on spin-dependent and spin-independent WIMP-proton cross-sections for WIMP masses in the range 20 - 5000 GeV. These are the most stringent s…

Particle physicsPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaDark matterFOS: Physical sciencesGeneral Physics and AstronomyCosmic rayddc:500.2MASSIVE PARTICLESAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics7. Clean energy01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)LIMITSWIMP0103 physical sciencesddc:550010306 general physicsLight dark matterCANDIDATESHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsAstrophysics::Instrumentation and Methods for AstrophysicsCONSTRAINTSCAPTURENEUTRINOSPhysics and AstronomyNeutrino detector13. Climate actionWeakly interacting massive particlesHigh Energy Physics::ExperimentCryogenic Dark Matter SearchNeutrinoAstrophysics - High Energy Astrophysical PhenomenaPhysical Review Letters
researchProduct

Search for GW signals associated with GRBs

2021

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38x10^-6^ (modeled) and 3.1x10^-4^ (unmodeled). We do not find any significant evidence for gravitational-wave signals assoc…

Astrophysics and AstronomyGamma-ray astronomyhigh energy astrophysicsAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstellar astronomyGamma ray burstsGravitational wavesCosmologyobservational astronomyGamma ray astronomyGamma-ray burstsAstrophysical ProcessesNatural Sciences
researchProduct