0000000001323745

AUTHOR

Luca Magazzu'

Dynamics of a Driven Dissipative Quantum System

We investigate the dynamics of a driven multilevel system, consisting of a particle in an asymmetric bistable potential, strongly interacting with a thermal bath according to the Caldeira-Leggett model. The populations in the discrete (position) variable representation (DVR), are obtained as solution of a Markovian approximated master equation, which is derived from a discretized path integral approach based on the Feynman-Vernon influence functional. By varying the environmental parameters (temperature and coupling strength) as well as the driving frequency and amplitude, we study the transient dynamics and stationary configuration of the system. In particular, we analyze the population of…

research product

Metastability and Relaxation in Quantum and Mesoscopic Systems

The transient dynamics and the relaxation of three quantum and mesoscopic systems are investigated. In particular we analyze: (i) a long Josephson junction (LJJ) driven by a non-Gaussian Lévy noise current; (ii) a metastable quantum dissipative system driven by an external periodical driving; and (iii) the electron spin relaxation process in n-type GaAs crystals driven by a fluctuating electric field. Specifically, in the first system the LJJ phase evolution is described by the perturbed sine-Gordon equation. We find the noise enhanced stability and resonant activation phenomena, by investigating the mean escape time as a function of the bias current frequency, noise intensity and length of…

research product