0000000001324205

AUTHOR

Stanislav Hencl

showing 17 related works from this author

A Note on Extremal Mappings of Finite Distortion

2005

General MathematicsDistortionMathematical analysisTopologyMathematicsMathematical Research Letters
researchProduct

Sharp generalized Trudinger inequalities via truncation

2006

Abstract We prove that the generalized Trudinger inequalities into exponential and double exponential Orlicz spaces improve to inequalities on Orlicz–Lorentz spaces provided they are stable under truncation.

Mathematics::Functional AnalysisLorentz spaceTruncationApplied MathematicsMathematical analysisDouble exponential functionMathematics::Classical Analysis and ODEsSobolev inequalitiesOrlicz spacesAnalysisExponential functionSobolev inequalityMathematicsJournal of Mathematical Analysis and Applications
researchProduct

Explicit Upper Bound for Entropy Numbers

2004

We give an explicit upper bound for the entropy numbers of the embedding I : W r,p(Ql) → C(Ql) where Ql = (−l, l)m ⊂ Rm, r ∈ N, p ∈ (1,∞) and rp > m.

CombinatoricsApplied MathematicsMaximum entropy probability distributionEmbeddingEntropy (information theory)Min entropyUpper and lower boundsAnalysisEntropy rateQuantum relative entropyJoint quantum entropyMathematicsZeitschrift für Analysis und ihre Anwendungen
researchProduct

Composition of quasiconformal mappings and functions in Triebel-Lizorkin spaces

2012

Let α > 0 and p ∈ [1, ∞) satisfy αp ≤ n. Suppose that f: Rn Rn is a K-quasiconformal mapping and let u ∈ Wα, p(Rn) have compact support. We find an optimal value of β = β(α, K, n) such that u○f ∈ Wβ, p(Rn). We also give an answer to the analogous problem where we moreover assume that u is bounded.

CombinatoricsGeneral MathematicsBounded functionMathematical analysisComposition (combinatorics)Value (mathematics)MathematicsMathematische Nachrichten
researchProduct

Images and Preimages of Null Sets

2013

In this chapter we study conditions that guarantee that our mapping maps sets of measure zero to sets of measure zero. We start with the problem in general Sobolev spaces, after which we establish a better result for mappings of finite distortion. Then we introduce a natural class of counterexamples to statements of this type and finally we give a weak condition under which the preimage of a set of measure zero has measure zero for mappings of finite distortion.

Distortion (mathematics)Sobolev spaceSet (abstract data type)Null setPure mathematicsNull (mathematics)Type (model theory)Natural classCounterexampleMathematics
researchProduct

Openness and Discreteness

2013

The aim of this chapter is to study conditions under which a mapping of finite distortion is open (maps open sets to open sets) and discrete (preimage of each point is a discrete set).

symbols.namesakeDirac measureDistortionMathematical analysisOpen setsymbolsOpenness to experiencePoint (geometry)Conformal mapDiscrete setNonlinear elasticityMathematics
researchProduct

Homeomorphisms of Finite Distortion

2013

In this chapter we establish the optimal regularity of the inverse mapping in higher dimensions and optimal Sobolev regularity for composites. Moreover, we establish optimal moduli of continuity for mappings in our classes and we discuss orientation preservation and approximation of Sobolev homeomorphisms.

Distortion (mathematics)Sobolev spaceOrientation (vector space)Quasiconformal mappingPure mathematicsComposition operatorMathematics::Analysis of PDEsInverseCoarea formulaMathematicsModuli
researchProduct

Mappings of finite distortion : size of the branch set

2018

Abstract We study the branch set of a mapping between subsets of ℝ n {\mathbb{R}^{n}} , i.e., the set where a given mapping is not defining a local homeomorphism. We construct several sharp examples showing that the branch set or its image can have positive measure.

Applied Mathematics010102 general mathematicsbranch setsTopology01 natural sciencesSet (abstract data type)funktioteoriamappings of finite distortionDistortion0103 physical sciences010307 mathematical physics0101 mathematicsAnalysisGeometry and topologyMathematics
researchProduct

Regularity of the inverse of a Sobolev homeomorphism in space

2006

Let Ω ⊂ Rn be open. Given a homeomorphism of finite distortion with |Df| in the Lorentz space Ln−1, 1 (Ω), we show that and f−1 has finite distortion. A class of counterexamples demonstrating sharpness of the results is constructed.

Sobolev spaceDistortion (mathematics)Lorentz spaceGeneral MathematicsMathematical analysisComputingMethodologies_DOCUMENTANDTEXTPROCESSINGBesov spaceInterpolation spaceSpace (mathematics)HomeomorphismMathematicsSobolev inequalityProceedings of the Royal Society of Edinburgh: Section A Mathematics
researchProduct

Mappings of finite distortion: discreteness and openness for quasi-light mappings

2005

Abstract Let f ∈ W 1 , n ( Ω , R n ) be a continuous mapping so that the components of the preimage of each y ∈ R n are compact. We show that f is open and discrete if | D f ( x ) | n ⩽ K ( x ) J f ( x ) a.e. where K ( x ) ⩾ 1 and K n − 1 / Φ ( log ( e + K ) ) ∈ L 1 ( Ω ) for a function Φ that satisfies ∫ 1 ∞ 1 / Φ ( t ) d t = ∞ and some technical conditions. This divergence condition on Φ is shown to be sharp.

CombinatoricsDistortion (mathematics)Open mappingApplied MathematicsHausdorff dimensionMathematical analysisFunction (mathematics)Mathematical PhysicsAnalysisMathematicsAnnales de l'Institut Henri Poincaré C, Analyse non linéaire
researchProduct

Approximation of W1, Sobolev homeomorphism by diffeomorphisms and the signs of the Jacobian

2018

Abstract Let Ω ⊂ R n , n ≥ 4 , be a domain and 1 ≤ p [ n / 2 ] , where [ a ] stands for the integer part of a. We construct a homeomorphism f ∈ W 1 , p ( ( − 1 , 1 ) n , R n ) such that J f = det ⁡ D f > 0 on a set of positive measure and J f 0 on a set of positive measure. It follows that there are no diffeomorphisms (or piecewise affine homeomorphisms) f k such that f k → f in W 1 , p .

Sobolev homeomorphismGeneral Mathematicsta111010102 general mathematicsA domain01 natural sciencesMeasure (mathematics)Homeomorphism010101 applied mathematicsSobolev spaceCombinatoricssymbols.namesakeIntegerJacobian matrix and determinantsymbolsPiecewise affine0101 mathematicsapproximationJacobianMathematicsAdvances in Mathematics
researchProduct

Mappings of finite distortion: Reverse inequalities for the Jacobian

2007

Let f be a nonconstant mapping of finite distortion. We establish integrability results on 1/Jf by studying weights that satisfy a weak reverse Holder inequality where the associated constant can depend on the ball in question. Here Jf is the Jacobian determinant of f.

symbols.namesakePure mathematicsDifferential geometryFourier analysisMathematical analysisJacobian matrix and determinantsymbolsGeometry and TopologyBall (mathematics)Reverse holder inequalityMathematicsJournal of Geometric Analysis
researchProduct

Quasihyperbolic boundary conditions and capacity: Uniform continuity of quasiconformal mappings

2005

We prove that quasiconformal maps onto domains which satisfy a suitable growth condition on the quasihyperbolic metric are uniformly continuous when the source domain is equipped with the internal metric. The obtained modulus of continuity and the growth assumption on the quasihyperbolic metric are shown to be essentially sharp. As a tool, we prove a new capacity estimate.

Uniform continuityPartial differential equationMathematics::Complex VariablesGeneral MathematicsMathematical analysisMetric (mathematics)Mathematics::Metric GeometryBoundary value problemAnalysisModulus of continuityDomain (mathematical analysis)MathematicsJournal d'Analyse Mathématique
researchProduct

Integrability of J f and 1∕J f

2013

In this chapter we study the optimal degree of integrability of J f and 1∕J f for mappings of finite distortion. As an application of our estimates we show that some sets are removable singularities for mappings with exponentially integrable distortion.

PhysicsPure mathematicsDegree (graph theory)Integrable systemDistortionGravitational singularity
researchProduct

Dimension gap under conformal mappings

2012

Abstract We give an estimate for the Hausdorff gauge dimension of the boundary of a simply connected planar domain under p -integrability of the hyperbolic metric, p > 1 . This estimate does not degenerate when p tends to one; for p = 1 the boundary can even have positive area. The same phenomenon is extended to general planar domains in terms of the quasihyperbolic metric. We also give an example which shows that our estimates are essentially sharp.

Mathematics(all)General Mathematics010102 general mathematicsMathematical analysista111Hausdorff spaceMinkowski–Bouligand dimensionBoundary (topology)Dimension functionHausdorff dimensionEffective dimension01 natural sciencesConformal mapping010101 applied mathematicsBoundary behaviourPacking dimensionHausdorff dimensionMetric (mathematics)0101 mathematicsMathematicsAdvances in Mathematics
researchProduct

Jacobian of weak limits of Sobolev homeomorphisms

2016

Abstract Let Ω be a domain in ℝ n {\mathbb{R}^{n}} , where n = 2 , 3 {n=2,3} . Suppose that a sequence of Sobolev homeomorphisms f k : Ω → ℝ n {f_{k}\colon\Omega\to\mathbb{R}^{n}} with positive Jacobian determinants, J ⁢ ( x , f k ) > 0 {J(x,f_{k})>0} , converges weakly in W 1 , p ⁢ ( Ω , ℝ n ) {W^{1,p}(\Omega,\mathbb{R}^{n})} , for some p ⩾ 1 {p\geqslant 1} , to a mapping f. We show that J ⁢ ( x , f ) ⩾ 0 {J(x,f)\geqslant 0} a.e. in Ω. Generalizations to higher dimensions are also given.

Pure mathematicsSobolev homeomorphismgeometry01 natural sciencesweak limitssymbols.namesake0103 physical sciences0101 mathematicsGeometry and topologyMathematicsSequencekonvergenssiconvergencematematiikkamathematicsApplied Mathematics010102 general mathematicsA domainelasticity (physical properties)kimmoisuusSobolev spaceJacobian matrix and determinantsymbols010307 mathematical physicsgeometriaAnalysisJacobian
researchProduct

Sharpness of the differentiability almost everywhere and capacitary estimates for Sobolev mappings

2017

We give sharp conformal conditions for the dfferentiability in the Sobolev space W1, n-1 loc (Ω,Rn). Furthermore, we show that the space W1, n-1 loc (Ω,Rn) can be considered as the borderline space for some capacitary inequalities. peerReviewed

capacitymapping of finite distortionSobolev mappingsdifferentiability
researchProduct