0000000001324450
AUTHOR
Igor Niezgodzki
Response of Central European SST to atmospheric pCO2 forcing during the Oligocene – A combined proxy data and numerical climate model approach
CO2-induced global warming will affect seasonal to decadal temperature patterns. Expected changes will be particularly strong in extratropical regions where temperatures will increase at faster rates than at lower latitudes. Despite that, it is still poorly constrained how precisely short-term climate dynamics will change in a generally warmer world, particularly in nearshore surface waters in the extratropics, i.e., the ecologically most productive regions of the ocean on which many human societies depend. Specifically, a detailed knowledge of the relationship between pCO2 and seasonal SST is crucial to understand interactions between the ocean and the atmosphere. In the present investigat…
Inter-annual climate variability in Europe during the Oligocene icehouse
Abstract New sclerochronological data suggest that a variability comparable to the North Atlantic Oscillation (NAO) was already present during the middle Oligocene, about 20 Myr earlier than formerly assumed. Annual increment width data of long-lived marine bivalves of Oligocene (30–25 Ma) strata from Central Europe revealed a distinct quasi-decadal climate variability modulated on 2–12 (mainly 3–7) year cycles. As in many other modern bivalves, these periodic changes in shell growth were most likely related to changes in primary productivity, which in turn, were coupled to atmospheric circulation patterns. Stable carbon isotope values of the shells (δ 13 C shell ) further corroborated the …
Growth increment width measurement and SGIshell data, and COSMOS model simulations
New sclerochronological data suggest that a variability comparable to the North Atlantic Oscillation (NAO) was already present during the middle Oligocene, about 20 Myr earlier than formerly assumed. Annual increment width data of long-lived marine bivalves of Oligocene (30-25 Ma) strata from Central Europe revealed a distinct quasi-decadal climate variability modulated on 2-12 (mainly 3-7) year cycles. As in many other modern bivalves, these periodic changes in shell growth were most likely related to changes in primary productivity, which in turn, were coupled to atmospheric circulation patterns. Stable carbon isotope values of the shells (d13Cshell) further corroborated the link between …