0000000001328513

AUTHOR

Henrik Shahgholian

Free boundary methods and non-scattering phenomena

We study a question arising in inverse scattering theory: given a penetrable obstacle, does there exist an incident wave that does not scatter? We show that every penetrable obstacle with real-analytic boundary admits such an incident wave. At zero frequency, we use quadrature domains to show that there are also obstacles with inward cusps having this property. In the converse direction, under a nonvanishing condition for the incident wave, we show that there is a dichotomy for boundary points of any penetrable obstacle having this property: either the boundary is regular, or the complement of the obstacle has to be very thin near the point. These facts are proved by invoking results from t…

research product

A minimization problem with free boundary and its application to inverse scattering problems

We study a minimization problem with free boundary, resulting in hybrid quadrature domains for the Helmholtz equation, as well as some application to inverse scattering problem.

research product

On the Porosity of Free Boundaries in Degenerate Variational Inequalities

Abstract In this note we consider a certain degenerate variational problem with constraint identically zero. The exact growth of the solution near the free boundary is established. A consequence of this is that the free boundary is porous and therefore its Hausdorff dimension is less than N and hence it is of Lebesgue measure zero.

research product

Quadrature domains for the Helmholtz equation with applications to non-scattering phenomena

In this paper, we introduce quadrature domains for the Helmholtz equation. We show existence results for such domains and implement the so-called partial balayage procedure. We also give an application to inverse scattering problems, and show that there are non-scattering domains for the Helmholtz equation at any positive frequency that have inward cusps.

research product

Free boundary methods and non-scattering phenomena

We study a question arising in inverse scattering theory: given a penetrable obstacle, does there exist an incident wave that does not scatter? We show that every penetrable obstacle with real-analytic boundary admits such an incident wave. At zero frequency, we use quadrature domains to show that there are also obstacles with inward cusps having this property. In the converse direction, under a nonvanishing condition for the incident wave, we show that there is a dichotomy for boundary points of any penetrable obstacle having this property: either the boundary is regular, or the complement of the obstacle has to be very thin near the point. These facts are proved by invoking results from t…

research product