0000000001332312

AUTHOR

Juha A. E. Määttä

showing 8 related works from this author

Design and construction of highly stable, protease-resistant chimeric avidins.

2005

The chicken avidin gene family consists of avidin and seven separate avidin-related genes (AVRs) 1-7. Avidin protein is a widely used biochemical tool, whereas the other family members have only recently been produced as recombinant proteins and characterized. In our previous study, AVR4 was found to be the most stable biotin binding protein thus far characterized (T(m) = 106.4 degrees C). In this study, we studied further the biotin-binding properties of AVR4. A decrease in the energy barrier between the biotin-bound and unbound state of AVR4 was observed when compared with that of avidin. The high resolution structure of AVR4 facilitated comparison of the structural details of avidin and …

Models MolecularBiotin bindingInsectaProtein familyProtein subunitRecombinant Fusion ProteinsMolecular Sequence DataBiotinBiosensing TechniquesBiologyProtein EngineeringBiochemistryProtein Structure SecondaryProtein structureAnimalsAmino Acid SequenceMolecular BiologyThermostabilityCalorimetry Differential ScanningSequence Homology Amino AcidTemperatureCell BiologyProtein engineeringAvidinRecombinant ProteinsProtein Structure TertiaryKineticsBiochemistryMicroscopy FluorescenceMutagenesisBiotinylationMutationbiology.proteinChromatography GelThermodynamicsElectrophoresis Polyacrylamide GelEndopeptidase KBaculoviridaeChickensAvidinChromatography LiquidPeptide HydrolasesProtein BindingThe Journal of biological chemistry
researchProduct

Host Cell Calpains Can Cleave Structural Proteins from the Enterovirus Polyprotein

2019

Enteroviruses are small RNA viruses that cause diseases with various symptoms ranging from mild to severe. Enterovirus proteins are translated as a single polyprotein, which is cleaved by viral proteases to release capsid and nonstructural proteins. Here, we show that also cellular calpains have a potential role in the processing of the enteroviral polyprotein. Using purified calpains 1 and 2 in an in vitro assay, we show that addition of calpains leads to an increase in the release of VP1 and VP3 capsid proteins from P1 of enterovirus B species, detected by western blotting. This was prevented with a calpain inhibitor and was dependent on optimal calcium concentration, especially for calpa…

0301 basic medicineProteasesentsyymitRNA virusviruksetvirusesPeptideCleavage (embryo)infektiotMass SpectrometryArticle03 medical and health sciencesViral ProteinsCapsidVirologyCleaveEnterovirus InfectionsAnimalsHumansCells CulturedGlycoproteinsPolyproteinschemistry.chemical_classification030102 biochemistry & molecular biologybiologyChemistryCalpainenterovirusvirus diseasesRNA virusCalpainbiochemical phenomena metabolism and nutritionbiology.organism_classificationAmino acidRatspolyproteinenterovirukset030104 developmental biologyInfectious DiseasesBiochemistryCapsidproteolytic processingProteolysisbiology.proteinCapsid ProteinsproteiinitPeptidescalpain
researchProduct

Efficient production of active chicken avidin using a bacterial signal peptide in Escherichia coli

2004

Chicken avidin is a highly popular tool with countless applications in the life sciences. In the present study, an efficient method for producing avidin protein in the periplasmic space of Escherichia coli in the active form is described. Avidin was produced by replacing the native signal sequence of the protein with a bacterial OmpA secretion signal. The yield after a single 2-iminobiotin–agarose affinity purification step was approx. 10 mg/l of virtually pure avidin. Purified avidin had 3.7 free biotin-binding sites per tetramer and showed the same biotin-binding affinity and thermal stability as egg-white avidin. Avidin crystallized under various conditions, which will enable X-ray cryst…

Signal peptideSpectrometry Mass Electrospray IonizationGlycosylationMolecular Sequence DataProtein Sorting Signalsmedicine.disease_causeBiochemistryAvian Proteinschemistry.chemical_compoundBacterial Proteinsstomatognathic systemTetramerAffinity chromatographymedicineAnimalsAmino Acid SequenceMolecular BiologyEscherichia coliEscherichia coli K12biologyCell BiologyPeriplasmic spacerespiratory systemAvidinMolecular WeightchemistryBiochemistryBiotinylationbiology.proteinChickensResearch ArticleBacterial Outer Membrane ProteinsAvidinBiochemical Journal
researchProduct

Molecular mechanism of T-cell protein tyrosine phosphatase (TCPTP) activation by mitoxantrone.

2013

T-cell protein tyrosine phosphatase (TCPTP) is a ubiquitously expressed non-receptor protein tyrosine phosphatase. It is involved in the negative regulation of many cellular signaling pathways. Thus, activation of TCPTP could have important therapeutic applications in diseases such as cancer and inflammation. We have previously shown that the α-cytoplasmic tail of integrin α1β1 directly binds and activates TCPTP. In addition, we have identified in a large-scale high-throughput screen six small molecules that activate TCPTP. These small molecule activators include mitoxantrone and spermidine. In this study, we have investigated the molecular mechanism behind agonist-induced TCPTP activation.…

SpermidineProtein tyrosine phosphataseBiochemistryAnalytical Chemistry0302 clinical medicinePhosphorylationDatabases Protein0303 health sciencesProtein Tyrosine Phosphatase Non-Receptor Type 2biologyChemistrySmall molecule3. Good healthCell biologyisothermal titration calorimetryMolecular Docking Simulationmolecular dynamics simulation030220 oncology & carcinogenesis/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingThermodynamicsHydrophobic and Hydrophilic InteractionsProtein BindingSignal TransductionCell signalingintegrinIntegrinPhosphataseStatic ElectricityBiophysicsAntineoplastic AgentsMolecular Dynamics Simulationta3111mitoxantroneIntegrin alpha1beta1Small Molecule Libraries03 medical and health sciencesSDG 3 - Good Health and Well-beingdifferential scanning fluorimetryHumansBinding siteMolecular Biology030304 developmental biologyT-cell protein tyrosine phosphataseta1182ta3122In vitroProtein Structure TertiaryKineticsCytoplasmbiology.proteinMitoxantronePeptidesBiochimica et Biophysica Acta: Proteins and Proteomics
researchProduct

Optimized production and purification of Coxsackievirus B1 vaccine and its preclinical evaluation in a mouse model.

2017

Coxsackie B viruses are among the most common enteroviruses, causing a wide range of diseases. Recent studies have also suggested that they may contribute to the development of type 1 diabetes. Vaccination would provide an effective way to prevent CVB infections, and the objective of this study was to develop an efficient vaccine production protocol for the generation of novel CVB vaccines. Various steps in the production of a formalin-inactivated Coxsackievirus B1 (CVB1) vaccine were optimized including the Multiplicity Of Infection (MOI) used for virus amplification, virus cultivation time, type of cell growth medium, virus purification method and formulation of the purified virus. Safety…

0301 basic medicineformalin inactivationviruksetvirusesDrug Evaluation PreclinicalPolysorbatesmedicine.disease_causeAntibodies ViralMice0302 clinical medicineMultiplicity of infectionImmunogenicity VaccinevaccineChlorocebus aethiops030212 general & internal medicineImmunogenicityVaccinationVaccinationInfectious Diseasescoxsackievirus B1Molecular MedicineFemaleUltracentrifugeVirus CultivationCoxsackievirus InfectionsBiologyCoxsackievirusta3111VirusMicrobiology03 medical and health sciencesFormaldehydemedicineAnimalsCVB1Vero CellscoxsackievirusGeneral VeterinaryGeneral Immunology and Microbiologyrokotteetta1182Public Health Environmental and Occupational HealthViral Vaccinesbiology.organism_classificationVirologyAntibodies NeutralizingVirus CultivationEnterovirus A HumanDisease Models Animal030104 developmental biologyVaccines Inactivatedvirus purificationEnterovirusVaccine
researchProduct

The Minor Capsid Protein VP11 of Thermophilic Bacteriophage P23-77 Facilitates Virus Assembly by Using Lipid-Protein Interactions

2015

ABSTRACT Thermus thermophilus bacteriophage P23-77 is the type member of a new virus family of icosahedral, tailless, inner-membrane-containing double-stranded DNA (dsDNA) viruses infecting thermophilic bacteria and halophilic archaea. The viruses have a unique capsid architecture consisting of two major capsid proteins assembled in various building blocks. We analyzed the function of the minor capsid protein VP11, which is the third known capsid component in bacteriophage P23-77. Our findings show that VP11 is a dynamically elongated dimer with a predominantly α-helical secondary structure and high thermal stability. The high proportion of basic amino acids in the protein enables electrost…

Models MolecularvirusesMolecular Sequence DataStatic ElectricityImmunologyMicrobiologyProtein–protein interactionBacteriophagechemistry.chemical_compoundCapsidVirologyBacteriophagesAmino Acid SequenceThermusPeptide sequenceProtein secondary structureprotein-lipid systemsbiologyVirus AssemblyStructure and AssemblyCapsomereVirionThermus thermophilusLipid Metabolismbiology.organism_classificationLipidsMolecular biologychemistryCapsidInsect Sciencethermophilic virusesBiophysicsCapsid ProteinsDNAkapsidiJournal of Virology
researchProduct

Tetravalent single-chain avidin: from subunits to protein domains via circularly permuted avidins

2005

scAvd (single-chain avidin, where two dcAvd are joined in a single polypeptide chain), having four biotin-binding domains, was constructed by fusion of topologically modified avidin units. scAvd showed similar biotin binding and thermal stability properties as chicken avidin. The DNA construct encoding scAvd contains four circularly permuted avidin domains, plus short linkers connecting the four domains into a single polypeptide chain. In contrast with wild-type avidin, which contains four identical avidin monomers, scAvd enables each one of the four avidin domains to be independently modified by protein engineering. Therefore the scAvd scaffold can be used to construct spatially and stoich…

Models MolecularBiotin bindingProtein domainMolecular Sequence DataProtein EngineeringBiochemistrychemistry.chemical_compoundMoleculeAnimalsMolecular BiologyCells CulturedBinding SitesbiologyChemistryCell BiologyProtein engineeringCircular permutation in proteinsAvidinProtein Structure TertiaryCrystallographyProtein SubunitsMonomerBiophysicsbiology.proteinDNA constructChickensAvidinResearch ArticleProtein Binding
researchProduct

Structure and characterization of a novel chicken biotin-binding protein A (BBP-A)

2007

Background. The chicken genome contains a BBP-A gene showing similar characteristics to avidin family genes. In a previous study we reported that the BBP-A gene may encode a biotin-binding protein due to the high sequence similarity with chicken avidin, especially at regions encoding residues known to be located at the ligand-binding site of avidin. Results. Here, we expand the repertoire of known macromolecular biotin binders by reporting a novel biotin-binding protein A (BBP-A) from chicken. The BBP-A recombinant protein was expressed using two different expression systems and purified with affinity chromatography, biochemically characterized and two X-ray structures were solved – in comp…

biotiinibiotinkiderakennex-ray structure
researchProduct