0000000001335094
AUTHOR
Magazzu', Luca
Dynamics of a quantum particle interacting with a thermal bath and subject to an oscillating asymmetric bistable potential
Exploiting the approach of the Feynman-Vernon influence functional [1] within the framework of the discrete variable representation (DVR) [2], we consider a quantum particle described by the Caldeira-Leggett model [3]. The particle, “moving” in an asymmetric bistable potential and subject to a periodical driving, interacts with a thermal bath of harmonic oscillators. In this conditions we study the dynamics of the particle by analyzing the time evolution of the populations in the DVR. Specifically we focalize on the position eigenstate located in the shallower well, i.e. metastable state, finding a non-monotonic behaviour of the corresponding population as a function of the frequency. Moreo…
Transient Dynamics of a Driven Quantum Bistable System
We study the transient dynamics and the asymptotic behaviour of a multilevel system in the strong dissipation regime. The system is modeled as a periodically driven quantum particle in an asymmetric double well potential, interacting with the bosonic heat bath of the Caldeira-Leggett model. The analytical approach used is non- perturbative in the particle-bath coupling and is based on a space-discretized path integral expression for the particle’s reduced density matrix. By a suitable approximation on the Feynman-Vernon influence functional a Markov-approximated master equation is obtained for the populations in the Discrete Variable Representation (DVR).