6533b7cefe1ef96bd1256fd5
RESEARCH PRODUCT
Statistical properties of the eigenvalue spectrum of the three-dimensional Anderson Hamiltonian
Michael SchreiberE. Hofstettersubject
PhysicsPhase transitionCritical phenomenaCondensed Matter::Disordered Systems and Neural Networkssymbols.namesakeCritical point (thermodynamics)Thermodynamic limitsymbolsCondensed Matter::Strongly Correlated ElectronsStatistical physicsHamiltonian (quantum mechanics)Random matrixAnderson impurity modelEigenvalues and eigenvectorsdescription
A method to describe the metal-insulator transition (MIT) in disordered systems is presented. For this purpose the statistical properties of the eigenvalue spectrum of the Anderson Hamiltonian are considered. As the MIT corresponds to the transition between chaotic and nonchaotic behavior, it can be expected that the random matrix theory enables a qualitative description of the phase transition. We show that it is possible to determine the critical disorder in this way. In the thermodynamic limit the critical point behavior separates two different regimes: one for the metallic side and one for the insulating side.
year | journal | country | edition | language |
---|---|---|---|---|
1993-12-15 | Physical Review B |