6533b7cefe1ef96bd125706e
RESEARCH PRODUCT
The effects of nitric oxide on striatal serotoninergic transmission involve multiple targets: an in vivo microdialysis study in the awake rat
Luca SteardoKeith M. KendrickLuigia TrabaceVincenzo CuomoTommaso CassanoPaolo Tuccisubject
MaleSerotoninmedicine.medical_specialtyMicrodialysisN-MethylaspartateMicrodialysisNitric Oxide Synthase Type IPharmacologyNitric OxideSerotonergicSynaptic TransmissionNitric oxidechemistry.chemical_compoundSuperoxidesPeroxynitrous AcidInternal medicinemedicineAnimalsEnzyme InhibitorsRats WistarNeurotransmitterCyclic GMPMolecular Biologyneurotransmitters; modulators; transporters; and receptors; nitric oxide; serotonin; striatumbiologyGeneral NeuroscienceFree Radical ScavengersRatsNeostriatumNitric oxide synthasePeroxynitrous acidEndocrinologychemistryGuanylate Cyclasebiology.proteinNMDA receptorNeurology (clinical)SerotoninNitric Oxide SynthaseSignal TransductionDevelopmental Biologydescription
Abstract The role of endogenous nitric oxide (NO) in N -methyl- d -aspartate (NMDA)-induced modulation of serotonin (5-HT) release in the striatum of freely moving rats has been studied using microdialysis technique. NMDA-induced increase in 5-HT release was significantly inhibited by selective nitric oxide synthase (nNOS) inhibitor S -methylthiocitrulline (S-Me-TC), ONOO − scavenger l -cysteine ( l -cys), and guanylate cyclase (GC) inhibitor 1 H [1,2,4]oxadiazolo[4,3- a ]quinoxalin-1-one (ODQ). These data suggest that modulation of 5-HT levels is linked to the formation of NO produced by NMDA receptor activation and that endogenously produced NO increases 5-HT concentrations both by stimulating formation of 3′–5′-cyclic monophosphate (cGMP) and conversion of ONOO − .
year | journal | country | edition | language |
---|---|---|---|---|
2004-01-01 |