6533b7cefe1ef96bd12570f4

RESEARCH PRODUCT

Two-dimensional single- and multiple-quantum correlation spectroscopy in zero-field nuclear magnetic resonance.

Alexander PinesJohn W. BlanchardTobias F. SjolanderDmitry Budker

subject

Nuclear and High Energy PhysicsZero field NMRMagnetometerNuclear Magnetic Resonancephysics.chem-phBiophysicsFOS: Physical sciences010402 general chemistry01 natural sciencesBiochemistryMolecular physicsSpectral line030218 nuclear medicine & medical imagingIsotopomerslaw.invention03 medical and health sciences0302 clinical medicineEngineeringquant-phlawPhysics - Chemical PhysicsJ-Spectroscopy2D NMRSpectroscopyPhysicsChemical Physics (physics.chem-ph)Quantum PhysicsCorrelation spectroscopyZero (complex analysis)Zero-field NMRCondensed Matter PhysicsMultiple-quantum NMR3. Good health0104 chemical sciencesMagnetic fieldZULF NMRPhysical SciencesQuantum Physics (quant-ph)Two-dimensional nuclear magnetic resonance spectroscopy

description

We present single- and multiple-quantum correlation $J$-spectroscopy detected in zero ($<\!\!1$~$\mu$G) magnetic field using a \Rb vapor-cell magnetometer. At zero field the spectrum of ethanol appears as a mixture of \carbon isotopomers, and correlation spectroscopy is useful in separating the two composite spectra. We also identify and observe the zero-field equivalent of a double-quantum transition in ${}^{13}$C$_2$-acetic acid, and show that such transitions are of use in spectral assignment. Two-dimensional spectroscopy further improves the high resolution attained in zero-field NMR since selection rules on the coherence-transfer pathways allow for the separation of otherwise overlapping resonances into distinct cross-peaks.

https://escholarship.org/uc/item/6jm0d0rz