6533b7cefe1ef96bd125727e

RESEARCH PRODUCT

Ground-state fidelity and bipartite entanglement in the Bose-Hubbard model.

Alessandro VezzaniPierfrancesco Buonsante

subject

Quantum phase transitionPhysicsQuantum PhysicsHubbard modelFOS: Physical sciencesGeneral Physics and AstronomyQuantum entanglementBose–Hubbard modelSquashed entanglementMultipartite entanglementCondensed Matter - Other Condensed MatterQuantum mechanicsQuantum critical pointQuantum informationQuantum Physics (quant-ph)Other Condensed Matter (cond-mat.other)

description

We analyze the quantum phase transition in the Bose-Hubbard model borrowing two tools from quantum-information theory, i.e. the ground-state fidelity and entanglement measures. We consider systems at unitary filling comprising up to 50 sites and show for the first time that a finite-size scaling analysis of these quantities provides excellent estimates for the quantum critical point.We conclude that fidelity is particularly suited for revealing a quantum phase transition and pinning down the critical point thereof, while the success of entanglement measures depends on the mechanisms governing the transition.

10.1103/physrevlett.98.110601https://pubmed.ncbi.nlm.nih.gov/17501037