6533b7cefe1ef96bd12572be
RESEARCH PRODUCT
Ordinary muon capture studies for the matrix elements in ββ decay
I. YutlandovM. ShirchenkoV. G. EgorovC. PetitjeanJouni SuhonenV. B. BrudaninD. R. Zinatulinasubject
PhysicsMuonta114010308 nuclear & particles physicsenergy levels and level densitieschemistry.chemical_elementdouble beta decayGermaniumhiukkasfysiikka01 natural sciencesnuclear structure and decaysMuon captureelectron and muon captureMatrix (mathematics)chemistryExcited state0103 physical sciencesAtomic physicsNuclear Experiment010306 general physicsydinfysiikkaNuclear ExperimentEnergy (signal processing)Intensity (heat transfer)description
Precise measurement of $\gamma$-rays following ordinary (non-radiative) capture of negative muons by natural Se, Kr, Cd and Sm, as well as isotopically enriched $^{48}$Ti, $^{76}$Se, $^{82}$Kr, $^{106}$Cd and $^{150}$Sm targets was performed by means of HPGe detectors. Energy and time distributions were investigated and total life time of negative muon in different isotopes was deduced. Detailed analysis of $\gamma$-lines intensity allows to extract relative yield of several daughter nuclei and partial rates of ($\mu$,$\nu$) capture to numerous excited levels of the $^{48}$Sc, $^{76}$As, $^{82}$Br, $^{106}$Ag and $^{150}$Tc isotopes which are considered to be virtual states of an intermediate odd-odd nucleus in 2$\beta$-decay of $^{48}$Ca, $^{76}$Ge, $^{82}$Se, $^{106}$Cd and $^{150}$Nd, respectively. These rates are important as an experimental input for the theoretical calculation of the nuclear matrix elements of 2$\beta$-decay.
year | journal | country | edition | language |
---|---|---|---|---|
2018-03-29 | Physical Review C |