6533b7cefe1ef96bd1257689

RESEARCH PRODUCT

Quantitative Properties on the Steady States to A Schr\"odinger-Poisson-Slater System

Changlin Xiang

subject

Mathematics - Analysis of PDEs

description

A relatively complete picture on the steady states of the following Schr$\ddot{o}$dinger-Poisson-Slater (SPS) system \[ \begin{cases} -\Delta Q+Q=VQ-C_{S}Q^{2}, & Q>0\text{ in }\mathbb{R}^{3}\\ Q(x)\to0, & \mbox{as }x\to\infty,\\ -\Delta V=Q^{2}, & \text{in }\mathbb{R}^{3}\\ V(x)\to0 & \mbox{as }x\to\infty. \end{cases} \] is given in this paper: existence, uniqueness, regularity and asymptotic behavior at infinity, where $C_{S}>0$ is a constant. To the author's knowledge, this is the first uniqueness result on SPS system.

http://arxiv.org/abs/1408.6383