6533b7cefe1ef96bd1257a2e
RESEARCH PRODUCT
Stability analysis for stochastic hybrid systems: A survey
Antonino SferlazzaAndrew R. TeelAnantharaman Subbaramansubject
Lyapunov functionLyapunov stabilityContinuous-time stochastic processLyapunov functionDynamical systems theoryStochastic differential equationMarkov chainStochastic stabilityConverse theoremStochastic hybrid systemsymbols.namesakeStochastic differential equationSettore ING-INF/04 - AutomaticaControl and Systems EngineeringControl theoryHybrid systemStability theorysymbolsSwitching diffusionStochastic optimizationElectrical and Electronic EngineeringRobustnessStochastic switched systemMathematicsdescription
This survey addresses stability analysis for stochastic hybrid systems (SHS), which are dynamical systems that combine continuous change and instantaneous change and that also include random effects. We re-emphasize the common features found in most of the models that have appeared in the literature, which include stochastic switched systems, Markov jump systems, impulsive stochastic systems, switching diffusions, stochastic impulsive systems driven by renewal processes, diffusions driven by Lévy processes, piecewise-deterministic Markov processes, general stochastic hybrid systems, and stochastic hybrid inclusions. Then we review many of the stability concepts that have been studied, including Lyapunov stability, Lagrange stability, asymptotic stability, and recurrence. Next, we detail Lyapunov-based sufficient conditions for these properties, and additional relaxations of Lyapunov conditions. Many other aspects of stability theory for SHS, like converse Lyapunov theorems and robustness theory, are not fully developed; hence, we also formulate some open problems to serve as a partial roadmap for the development of the underdeveloped pieces. © 2014 Elsevier Ltd. All rights reserved.
year | journal | country | edition | language |
---|---|---|---|---|
2014-08-27 |