6533b7cefe1ef96bd1257c07
RESEARCH PRODUCT
Electric voltage generation by antiferromagnetic dynamics
Jairo SinovaJun'ichi IedaJun'ichi IedaYuta Yamanesubject
PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsSpintronicsFOS: Physical sciencesPerturbation (astronomy)02 engineering and technologyElectron dynamics021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials ScienceMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physics0210 nano-technologySpin (physics)Voltagedescription
We theoretically demonstrate dc and ac electric voltage generation due to spinmotive forces originating from domain wall motion and magnetic resonance, respectively, in two-sublattice antiferromagnets. Our theory accounts for the canting between the sublattice magnetizations, the nonadiabatic electron spin dynamics, and the Rashba spin-orbit coupling, with the inter-sublattice electron dynamics treated as a perturbation. This work suggests a new way to observe and explore the dynamics of antiferromagnetic textures by electrical means, an important aspect in the emerging field of antiferromagnetic spintronics, where both manipulation and detection of antiferromagnets are needed.
year | journal | country | edition | language |
---|---|---|---|---|
2015-12-01 | Physical Review B |