6533b7cffe1ef96bd1257ce3
RESEARCH PRODUCT
IRREDUCIBLE COXETER GROUPS
Luis Parissubject
[ MATH.MATH-GR ] Mathematics [math]/Group Theory [math.GR]General MathematicsGroup Theory (math.GR)0102 computer and information sciencesPoint group01 natural sciences[MATH.MATH-GR]Mathematics [math]/Group Theory [math.GR]CombinatoricsMathematics::Group TheoryFOS: Mathematics0101 mathematicsLongest element of a Coxeter groupMathematics::Representation Theory[MATH.MATH-GR] Mathematics [math]/Group Theory [math.GR]MathematicsMathematics::CombinatoricsCoxeter notationMathematics::Rings and Algebras010102 general mathematicsCoxeter group010201 computation theory & mathematicsCoxeter complexArtin group20F55Indecomposable moduleMathematics - Group TheoryCoxeter elementdescription
We prove that a non-spherical irreducible Coxeter group is (directly) indecomposable and that an indefinite irreducible Coxeter group is strongly indecomposable in the sense that all its finite index subgroups are (directly) indecomposable. Let W be a Coxeter group. Write W = WX1 × ⋯ × WXb × WZ3, where WX1, … , WXb are non-spherical irreducible Coxeter groups and WZ3 is a finite one. By a classical result, known as the Krull–Remak–Schmidt theorem, the group WZ3 has a decomposition WZ3 = H1 × ⋯ × Hq as a direct product of indecomposable groups, which is unique up to a central automorphism and a permutation of the factors. Now, W = WX1 × ⋯ × WXb × H1 × ⋯ × Hq is a decomposition of W as a direct product of indecomposable subgroups. We prove that such a decomposition is unique up to a central automorphism and a permutation of the factors. Write W = WX1 × ⋯ × WXa × WZ2 × WZ3, where WX1, … , WXa are indefinite irreducible Coxeter groups, WZ2 is an affine Coxeter group whose irreducible components are all infinite, and WZ3 is a finite Coxeter group. The group WZ2 contains a finite index subgroup R isomorphic to ℤd, where d = |Z2| - b + a and b - a is the number of irreducible components of WZ2. Choose d copies R1, … , Rd of ℤ such that R = R1 × ⋯ × Rd. Then G = WX1 × ⋯ × WXa × R1 × ⋯ × Rd is a virtual decomposition of W as a direct product of strongly indecomposable subgroups. We prove that such a virtual decomposition is unique up to commensurability and a permutation of the factors.
year | journal | country | edition | language |
---|---|---|---|---|
2004-12-10 | International Journal of Algebra and Computation |