6533b7cffe1ef96bd1257cf0
RESEARCH PRODUCT
Influence of hole transport material ionization energy on the performance of perovskite solar cells
Demetra TsokkouMichele SessoloBenedikt DänekampHenk J. BolinkVerena BrehmNatalie BanerjiNikolaos DroserosPablo P. Boixsubject
Materials scienceOpen-circuit voltagebusiness.industryHalide02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical scienceslaw.inventionlawSolar cellMaterials ChemistryValence bandOptoelectronicsCharge carrierIonization energy0210 nano-technologybusinessMaterialsHOMO/LUMOCèl·lules fotoelèctriquesPerovskite (structure)description
Halide perovskites have shown excellent photophysical properties for solar cell applications which led to a rapid increase of the device efficiency. Understanding the charge carrier dynamics within the active perovskite absorber and at its interfaces will be key to further progress in their development. Here we present a series of fully evaporated devices employing hole transport materials with different ionization energies. The open circuit voltage of the devices, along with their ideality factors, confirm that the former is mainly determined by the bulk and surface recombination in the perovskite, rather than by the energetic offset between the valence band of the perovskite and the highest occupied molecular orbital of the organic transport layers. These results help to further understand the origin of the open circuit potential in perovskite solar cells, which is an important parameter that needs to be improved to further boost power conversion efficiencies.
year | journal | country | edition | language |
---|---|---|---|---|
2019-01-01 | Journal of Materials Chemistry C |