6533b7cffe1ef96bd1257d24

RESEARCH PRODUCT

Thermal modelling of the ATHENA X-IFU filters

Elena PuccioAntonino ButtacavoliSalvatore Ferruggia BonuraFabio D'ancaLuisa SciortinoMarco BarberaUgo Lo Cicero

subject

CryostatMaterials scienceCondensed Matter Physic01 natural sciencesthermal simulationSettore FIS/05 - Astronomia E AstrofisicaOpticsthermal filter0103 physical sciencesThermalEmissivityRadiative transferElectrical and Electronic Engineering010306 general physicsThermal analysis010303 astronomy & astrophysicsX-IFUbusiness.industryElectronic Optical and Magnetic MaterialDetectorShot noiseComputer Science Applications1707 Computer Vision and Pattern RecognitionATHENAApplied MathematicFilter (video)business

description

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-IFU instrument of the ATHENA mission requires a set of thermal filters to reduce the photon shot noise onto its cryogenic detector and to protect it from molecular contamination. A set of five filters, operating at different nominal temperatures corresponding to the cryostat shield temperatures, is currently baselined. The knowledge of the actual filter temperature profiles is crucial to have a good estimation of the radiative load on the detector. Furthermore, a few filters may need to be warmed-up to remove contaminants and it is necessary to ensure that a threshold temperature is reached throughout the filters surface. For these reasons, it is fundamental to develop a thermal modeling of the full set of filters in a representative configuration. The baseline filter is a polyimide membrane 45 nm thick coated with 30 nm of highpurity aluminum, mechanically supported by a metallic honeycomb mesh. In this paper, we describe the implemented thermal modeling and report the results obtained in different studies: (i) a trade-off analysis on how to reach a minimum target temperature throughout the outer filter, (ii) a thermal analysis when varying the emissivity of the filter surfaces, and (iii) the effect of removing one of the filters.

https://doi.org/10.1117/12.2314453