0000000000056450

AUTHOR

Salvatore Ferruggia Bonura

Thermal modelling of the ATHENA X-IFU filters

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-IFU instrument of the ATHENA mission requires a set of thermal filters to reduce the photon shot noise onto its cryogenic detector and to protect it from molecular contamination. A set of five filters, operating at different nominal temperatures corresponding to the cryostat shield temperatures, is currently baselined. The knowledge of the actual filter temperature profi…

research product

Deformation analysis of ATHENA test filters made of plastic thin films supported by a mesh under differential static pressure

Within ESA Cosmic Vision 2015-2025 Science Program, ATHENA was selected to be a Large-class high energy astrophysics space mission. The observatory will be equipped with two interchangeable focal plane detectors named X-Ray Integral Field Unit (X-IFU) and Wide Field Imager (WFI). In order to optimally exploit the detector sensitivity, X-ray transparent filters are required. Such filters need to be extremely thin to maximize the X-ray transparency, that is, no more than a few tens of nm, still they must be able to sustain the severe stresses experienced during launch. Partially representative test filters were made with a thin polypropylene film, coated with Ti, and supported by a thin highl…

research product

Preliminary Mechanical Characterization of Thermal Filters for the X-IFU Instrument on Athena

The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision Science Program. The X-IFU consists of a large array of TES microcalorimeters that will operate at ~ 50 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be mounted on the cryostat thermal shields in order to attenuate the IR radiative load, to attenuate RF electromagnetic interferences, and to protect the detector from contamination. In this paper, we present the current thermal filters design, describe the filter samples developed/procured so far, and present preliminary results from the ongoing charac…

research product

Structural modelling and mechanical tests supporting the design of the ATHENA X-IFU thermal filters and WFI optical blocking filter

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. ATHENA is a Large high energy astrophysics space mission selected by ESA in the Cosmic Vision 2015-2025 Science Program. It will be equipped with two interchangeable focal plane detectors: the X-Ray Integral Field Unit (X-IFU) and the Wide Field Imager (WFI). Both detectors require x-ray transparent filters to fully exploit their sensitivity. In order to maximize the X-ray tra…

research product

ATHENA X-IFU thermal filters development status toward the end of the instrument phase-A

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-ray Integral Field Unit (X-IFU) is one of the two instruments of the Athena astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large array of transition edge sensor micro-calorimeters that will operate at 100 mK inside a sophisticated cryostat. A set of thin filters, highly transparent to X-rays, will be m…

research product

A Temperature-Dependent X-Ray Absorption Characterization of Test Filters for the ATHENA Mission X-IFU Instrument

In order to work properly, the X-ray Integral Field Unit of the ATHENA mission requires a set of thermal filters that block the infrared radiation, preventing it to reach the detector. Each filter will be mounted and thermally anchored onto a shield of the multistage cryostat and will be kept at the specific temperature of the stage. On the other hand, the filters partially absorb X-rays, and their transmittance has to be carefully characterized. The effect of temperature on the absorption edges of the elements that make up the filters has not been investigated yet. Here, we report the results of a preliminary run on the optical transmission data around the edges of C, N, and O at different…

research product

Towards an AMTEC-like device based on non-alkali metal for efficient, safe and reliable direct conversion of thermal to electric power

Alkali Metal ThermoElectric Converters directly convert heat into electric energy and have promising applicability in the field of sustainable and renewable energy. The high theoretical efficiency, close to Carnot's cycle, the lack of moving parts, and the interesting operating temperature range drive the search for new materials able to ensure safe and reliable operation at competitive costs.The present work focuses on the design of a non-alkali metal based cell and on the fabrication of a testing device to validate the design work. The selection of a new operating fluid for the cell improves durability, reliability and safety of the device. Finally, we discuss possible applications to alr…

research product

Radio frequency shielding of thin aluminized plastic filters investigated for the ATHENA X-IFU detector

Copyright 2018 Society of Photo-Optical Instrumentation Engineers (SPIE). One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited. The X-ray Integral Field Unit (X-IFU) is one of the two detectors of the ATHENA astrophysics space mission approved by ESA in the Cosmic Vision 2015-2025 Science Programme. The X-IFU consists of a large array of transition edge sensors (TES) micro-calorimeters covering a field of view of 5' diameter, sensitive in the energy range 0.2-12 keV, and providing a spectral resolution…

research product

X-Ray microcalorimeter detectors - Technology developments for high energy astrophysics space missions

Improvements in the design, fabrication, and performance of astronomical detectors has ushered in the so-called era of multi messenger astrophysics, in which several different signals (electromagnetic waves, gravitational waves, neutrinos, cosmic rays) are processed to obtain detailed descriptions of their sources. Soft x-ray instrumentation has been developed in the last decades and used on board numerous space missions. This has allowed a deep understanding of several physical phenomena taking place in astrophysical sources of different scales from normal stars to galaxy clusters and huge black holes. On the other hand, imaging and spectral capabilities in the the hard x-rays are still la…

research product