6533b7cffe1ef96bd1258554
RESEARCH PRODUCT
Beyond ideal two-dimensional metals: Edges, vacancies, and polarizabilities
Janne NevalaitaPekka Koskinensubject
Work (thermodynamics)Materials scienceCoordination numberFOS: Physical sciences02 engineering and technologyEdge (geometry)010402 general chemistry01 natural sciencesSquare (algebra)polarisaatioMetalnanorakenteetnanocrystalsVacancy defectMesoscale and Nanoscale Physics (cond-mat.mes-hall)charge polarizationcrystal defectspoint defectsIdeal (ring theory)Condensed matter physicsta114Condensed Matter - Mesoscale and Nanoscale Physicsline defectsviat021001 nanoscience & nanotechnologyvacancies0104 chemical sciencesBond lengthvisual_artfirst-principles calculationsvisual_art.visual_art_medium0210 nano-technologydescription
Recent experimental discoveries of graphene-stabilized patches of two-dimensional (2D) metals have motivated also their computational studies. However, so far the studies have been restricted to ideal and infinite 2D metallic monolayers, which is insufficient because in reality the properties of such metallic patches are governed by microstructures pervaded by edges, defects, and several types of perturbations. Here we use density-functional theory to calculate edge and vacancy formation energies of hexagonal and square lattices of 45 elemental 2D metals. We find that the edge and vacancy formation energies are strongly correlated and decrease with increasing Wigner-Seitz radii, analogously to surface energies. Despite a radical reduction in atomic coordination numbers, the 2D and 3D vacancy formation energies and work functions are nearly the same for each metal. Finally, static polarizabilities reveal a clear cubic dependence on bond length. These trends provide useful insights when moving towards reality with elemental 2D metals.
year | journal | country | edition | language |
---|---|---|---|---|
2018-01-01 |