6533b7cffe1ef96bd12586ab

RESEARCH PRODUCT

Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction.

Andrés LarrozaJose GavaraJose V. MonmeneuFrancisco J. ChorroDavid MoratalMaria P. Lopez-lereuVicente Bodi

subject

MaleLocal binary patternsMyocardial InfarctionMagnetic Resonance Imaging Cine030204 cardiovascular system & hematology030218 nuclear medicine & medical imagingTECNOLOGIA ELECTRONICA03 medical and health sciencesMagnetic resonance imaging0302 clinical medicineDiagnosisMachine learningmedicineImage Processing Computer-AssistedLate gadolinium enhancementHumansIn patientcardiovascular diseasesAnalysis methodRetrospective StudiesChronic myocardial infarctionTissue SurvivalReceiver operating characteristicmedicine.diagnostic_testbusiness.industryMagnetic resonance imagingHeartGeneral MedicineMiddle AgedClassificationChronic Diseasecardiovascular systemLeft ventricular myocardiumFemaleNuclear medicinebusiness

description

[EN] Purpose: To investigate the ability of texture analysis to differentiate between infarcted nonviable, viable, and remote segments on cardiac cine magnetic resonance imaging (MRI). Methods: This retrospective study included 50 patients suffering chronic myocardial infarction. The data were randomly split into training (30 patients) and testing (20 patients) sets. The left ventricular myocardium was segmented according to the 17-segment model in both cine and late gadolinium enhancement (LGE) MRI. Infarcted myocardium regions were identified on LGE in short-axis views. Nonviable segments were identified as those showing LGE 50%, and viable segments those showing 0 < LGE < 50% transmural extension. Features derived from five texture analysis methods were extracted from the segments on cine images. A support vector machine (SVM) classifier was trained with different combination of texture features to obtain a model that provided optimal classification performance. Results: The best classification on testing set was achieved with local binary patterns features using a 2D + t approach, in which the features are computed by including information of the time dimension available in cine sequences. The best overall area under the receiver operating characteristic curve (AUC) were: 0.849, sensitivity of 92% to detect nonviable segments, 72% to detect viable segments, and 85% to detect remote segments. Conclusion: Nonviable segments can be detected on cine MRI using texture analysis and this may be used as hypothesis for future research aiming to detect the infarcted myocardium by means of a gadolinium-free approach.

10.1002/mp.12783https://pubmed.ncbi.nlm.nih.gov/29389013