6533b7cffe1ef96bd12586bf

RESEARCH PRODUCT

Numerical Simulations of Jets from Active Galactic Nuclei

José-maría Martí

subject

PhysicsActive galactic nucleus010308 nuclear & particles physicsRadio galaxyplasma physicslcsh:AstronomyNumerical analysisAstrophysics::High Energy Astrophysical PhenomenaTheoretical modelsAstronomy and AstrophysicsAstrophysicsPlasmaAstrophysics::Cosmology and Extragalactic Astrophysics01 natural scienceslcsh:QB1-991Astrophysical jetmagneto-hydrodynamics0103 physical sciencesactive galactic nucleinumerical methodsMagnetohydrodynamics010303 astronomy & astrophysicsPhenomenology (particle physics)Astrophysics::Galaxy Astrophysicsrelativistic jets

description

Numerical simulations have been playing a crucial role in the understanding of jets from active galactic nuclei (AGN) since the advent of the first theoretical models for the inflation of giant double radio galaxies by continuous injection in the late 1970s. In the almost four decades of numerical jet research, the complexity and physical detail of simulations, based mainly on a hydrodynamical/magneto-hydrodynamical description of the jet plasma, have been increasing with the pace of the advance in theoretical models, computational tools and numerical methods. The present review summarizes the status of the numerical simulations of jets from AGNs, from the formation region in the neighborhood of the supermassive central black hole up to the impact point well beyond the galactic scales. Special attention is paid to discuss the achievements of present simulations in interpreting the phenomenology of jets as well as their current limitations and challenges.

10.3390/galaxies7010024https://www.mdpi.com/2075-4434/7/1/24