6533b7cffe1ef96bd1258d2e

RESEARCH PRODUCT

Stability of the fergusonite phase in GdNbO 4 by high pressure XRD and Raman experiments

D. Vázquez-socorroDaniel ErrandoneaC. PopescuJulio Pellicer-porresAlka B. GargD. Martinez-garcia

subject

Materials sciencePhonon02 engineering and technology010402 general chemistryFergusonite01 natural sciencesInorganic ChemistryCondensed Matter::Materials Sciencesymbols.namesakePhase (matter)Materials ChemistryPhysical and Theoretical ChemistryIonic radiusCondensed matter physics021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesElectronic Optical and Magnetic MaterialsCrystallographyCeramics and CompositesCompressibilitysymbolsCondensed Matter::Strongly Correlated Electrons0210 nano-technologyRaman spectroscopyAmbient pressureMonoclinic crystal system

description

Abstract We describe the results of high pressure x-ray diffraction and Raman measurements on gadolinium orthoniobate. The ambient pressure monoclinic fergusonite phase remains stable in a remarkable large pressure range. There is no significative evolution of the monoclinic distortion up to 25 GPa , the maximum pressure achieved. Instead, the anisotropic compressibility is associated to the stiffness of NbO 4 tetrahedra in respect to the GdO 8 polyhedra. The high pressure evolution of external modes parallels the wavenumber dependence on ionic radius along the lanthanide series. The chemical pressure analogy is attributed to the compression of GdO 8 polyhedra. There is no evidence of any phonon softening.

https://doi.org/10.1016/j.jssc.2017.03.019