0000000000021472
AUTHOR
D. Martinez-garcia
Experimental and theoretical investigation of the stability of the monoclinicBaWO4-II phase at high pressure and high temperature
In this work we report high-pressure (HP) and high-temperature (HT) ex situ and in situ experiments in ${\text{BaWO}}_{4}$. Starting from powder samples of ${\text{BaWO}}_{4}$, scheelite structure $(I{4}_{1}/a)$, we reached conditions of 2.5--5.5 GPa and 400--1100 K using a Paris-Edinburgh press. The quenched samples were characterized by x-ray diffraction and Raman measurements at ambient conditions. Depending upon the final $P\text{\ensuremath{-}}T$ conditions we found either the scheelite or the monoclinic ${\text{BaWO}}_{4}$-II $(P{2}_{1}/n)$ structure. We also performed HP-HT in situ Raman measurements in a single crystal of ${\text{BaWO}}_{4}$ using a resistive-heated diamond-anvil ce…
Stability of the fergusonite phase in GdNbO 4 by high pressure XRD and Raman experiments
Abstract We describe the results of high pressure x-ray diffraction and Raman measurements on gadolinium orthoniobate. The ambient pressure monoclinic fergusonite phase remains stable in a remarkable large pressure range. There is no significative evolution of the monoclinic distortion up to 25 GPa , the maximum pressure achieved. Instead, the anisotropic compressibility is associated to the stiffness of NbO 4 tetrahedra in respect to the GdO 8 polyhedra. The high pressure evolution of external modes parallels the wavenumber dependence on ionic radius along the lanthanide series. The chemical pressure analogy is attributed to the compression of GdO 8 polyhedra. There is no evidence of any p…
High-pressure study of the behavior of mineral barite by x-ray diffraction
In this paper, we report the angle-dispersive x-ray diffraction data of barite, BaSO 4, measured in a diamond-anvil cell up to a pressure of 48 GPa, using three different fluid pressure-transmitting media (methanol-ethanol mixture, silicone oil, and He). Our results show that BaSO 4 exhibits a phase transition at pressures that range from 15 to 27 GPa, depending on the pressure media used. This indicates that nonhydrostatic stresses have a crucial role in the high-pressure behavior of this compound. The new high-pressure (HP) phase has been solved and refined from powder data, having an orthorhombic P2 12 12 1 structure. The pressure dependence of the structural parameters of both room- and…
Structural and vibrational behavior of cubic Cu1.80(3)Se cuprous selenide, berzelianite, under compression
[EN] We have performed an experimental study of the crystal structure and lattice dynamics of cubic Cu1.80(3)Se at ambient temperature and high pressures. Two reversible phase transitions were found at 2.9 and 8.7 GPa. The indexation of the angle-dispersive synchrotron x-ray diffraction patterns suggests a large orthorhombic cell and a monoclinic cell for the high-pressure phases. Raman measurements provide additional information on the local structure. The compressibility of the three ambient temperature phases has been determined and compared to that of other sulphides and selenides.
Monoclinic-tetragonal-monoclinic phase transitions in Eu0.1Bi0.9VO4 under pressure
The promising technological material Eu0.1Bi0.9VO4, has been studied for the first time at room-temperature under high-pressure, up to 24.9 GPa, by means of in situ angle dispersive powder x-ray diffraction (XRD). The compound undergoes two phase transitions at 1.9 and 16.1 GPa. The first transition is from the monoclinic fergusonite-type structure (space group I2/a) to a tetragonal scheelite-type structure (space group I41/a), being a ferroelastic-paraelastic transformation similar to that previously reported for isomorphic pristine BiVO4. The second phase transition is first-order in nature. The scheelite-type and the second high-pressure phase coexist in a wide pressure range. A monoclin…
High-pressure x-ray diffraction andab initiostudy ofNi2Mo3N,Pd2Mo3N,Pt2Mo3N,Co3Mo3N, andFe3Mo3N: Two families of ultra-incompressible bimetallic interstitial nitrides
We have studied by means of high-pressure x-ray diffraction the structural stability of ${\text{Ni}}_{2}{\text{Mo}}_{3}\text{N}$, ${\text{Co}}_{3}{\text{Mo}}_{3}\text{N}$, and ${\text{Fe}}_{3}{\text{Mo}}_{3}\text{N}$. We also report ab initio computing modeling of the high-pressure properties of these compounds, ${\text{Pd}}_{2}{\text{Mo}}_{3}\text{N}$ and ${\text{Pt}}_{2}{\text{Mo}}_{3}\text{N}$. We have found that the nitrides remain stable in the ambient-pressure cubic structure at least up to 50 GPa and determined their equation of state. All of them have a bulk modulus larger than 300 GPa. Single-crystal elastic constants have been calculated in order to quantify the stiffness of the i…
Structural and Vibrational Properties of Corundum-type In2O3 Nanocrystals under Compression
[EN] This work reports the structural and vibrational properties of nanocrystals of corundum-type In2O3 (rh-In2O3) at high pressures by using angle-dispersive x-ray diffraction and Raman scattering measurements up to 30 GPa. The equation of state and the pressure dependence of the Raman-active modes of the corundum phase in nanocrystals are in good agreement with previous studies on bulk material and theoretical simulations on bulk rh-In2O3. Nanocrystalline rh-In2O3 showed stability under compression at least up to 20 GPa, unlike bulk rh-In2O3 which gradually transforms to the orthorhombic Pbca (Rh2O3-III-type) structure above 12 14 GPa. The different stability range found in nanocrystallin…
Experimental and theoretical study on the optical properties of LaVO4 crystals under pressure
We report optical absorption and luminescence measurements in pure and trivalent neodymium (Nd3+) doped LaVO4 crystals up to 25 GPa. Nd3+ luminescence has been employed as a tool to follow the structural changes in the crystal. We also present band-structure and crystal-field calculations that provide the theoretical framework to accurately explain the observed experimental results. In particular, both optical absorption and luminescence measurements evidence that a phase transition takes place close to 12 GPa. They also provide information on the pressure dependence of the band-gap as well as the emission lines under compression. We found drastic changes in the optical properties of LaVO4 …
Phase transition systematics in BiVO4 by means of high-pressure–high-temperature Raman experiments
We report here high-pressure--high-temperature Raman experiments performed on ${\text{BiVO}}_{4}$. We characterized the fergusonite and scheelite phases (powder and single crystal samples) and the zircon polymorph (nanopowder). The experimental results are supported by ab initio calculations, which, in addition, provide the vibrational patterns. The temperature and pressure behavior of the fergusonite lattice modes reflects the distortions associated with the ferroelastic instability. The linear coefficients of the zircon phase are in sharp contrast to the behavior observed in the fergusonite phase. The boundary of the fergusonite-to-scheelite second-order phase transition is given by ${T}_…
Pressure-induced amorphization of YVO4:Eu3+ nanoboxes
A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu3+ nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu3+ photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two …
Pressure-induced phase transition and bandgap collapse in the wide-bandgap semiconductor InTaO4
A pressure-induced phase transition, associated with an increase of the coordination number of In and Ta, is detected beyond 13 GPa in InTaO4 by combining synchrotron x-ray diffraction and Raman measurements in a diamond-anvil cell with ab initio calculations. High-pressure optical-absorption measurements were also carried out. The high-pressure phase has a monoclinic structure that shares the same space group with the low-pressure phase (P2/c). The structure of the high-pressure phase can be considered as a slight distortion of an orthorhombic structure described by space group Pcna. The phase transition occurs together with a unit-cell volume collapse and an electronic band-gap collapse o…
Synthesis and High-Pressure Study of Corundum-Type In2O3
This work reports the high-pressure and high-temperature (HP-HT) synthesis of pure rhombohedral (corundum-type) phase of indium oxide (In2O3) from its most stable polymorph, cubic bixbyite-type In2O3, using a multianvil press. Structural and vibrational properties of corundum-type In2O3 (rh-In2O3) have been characterized by means of angle-dispersive powder X-ray diffraction and Raman scattering measurements at high pressures which have been compared to structural and lattice dynamics ab initio calculations. The equation of state and the pressure dependence of the Raman-active modes of the corundum-type phase are reported and compared to those of corundum (α-Al2O3). It can be concluded that …
Structural phase transitions on AgCuS stromeyerite mineral under compression.
The structural behavior of mineral Stromeyerite, AgCuS, has been studied by means of angle-dispersive X-ray diffraction measurements up to 13 GPa and ab initio total-energy calculations. Two high-pressure phase transitions are found at 1.4 and 5.7 GPa, from the initial distorted Ni(2)In-type phase (AuRbS-type, RP, space group Cmc2(1)) through an anti-PbClF-type phase (HP1, space group P4/nmm) to a monoclinic distortion of this latter phase (HP2, space group P2(1)/m). The collapse of the metal-metal interatomic distances at the RP-HP1 transition suggests a stronger metallic behavior of the high-pressure phase. The compressibility of the lattice parameters and the equation of state of the fir…
Correspondence: Strongly-driven Re+CO2 redox reaction at high-pressure and high-temperature.
Correspondence: Strongly-driven Re+CO 2 redox reaction at high-pressure and high-temperature
Pressure-induced instability of the fergusonite phase of EuNbO4 studied by in situ Raman spectroscopy, x-ray diffraction, and photoluminescence spectroscopy
In this article, we present high-pressure experimental investigations on EuNbO4, an interesting technologically important material, using synchrotron based x-ray powder diffraction, Raman spectroscopy, and europium photoluminescence measurements up to 39.2, 31.6, and 32.4 GPa, respectively. All three techniques show the stability of the ambient monoclinic phase until 20 GPa. Beyond that, a pressure-induced structural phase transition takes place with the coexistence of two phases over a wide pressure range. The structure of the high-pressure phase has been determined as orthorhombic (space group: Imma) with a volume discontinuity of nearly 9% at the transition indicating the nature of trans…
High-pressure and high-temperature X-ray diffraction studies of scheelite BaWO4
International audience; We carried out high-pressure (HP) and high-temperature (HT) in situ ADXRD synchrotron measurements in barium tungstate (BaWO4 ) up to 7.5 GPa and 800 K. Coexistence of the scheelite and fergusonite structures was found beyond 7 GPa, both at room temperature and HT, suggesting a polymorphism zone in the P –T phase diagram. The experiments are complemented by thermodynamic calculations within the quasi-harmonic approximation. At ambient pressure, a volume thermal expansivity of 9.5 × 10− 6 K−1 was obtained for scheelite BaWO4 . At HP, the thermal expansivity of the fergusonite doubles that of scheelite. Theoretical equation of state curves at HP and HT are also present…
Effects of high-pressure on the structural, vibrational, and electronic properties of monazite-type PbCrO4
We have performed an experimental study of the crystal structure, lattice dynamics, and optical properties of PbCrO 4 (the mineral crocoite) at ambient and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band gap have been accurately determined. X-ray-diffraction, Raman, and optical absorption experiments have allowed us also to completely characterize two pressure-induced structural phase transitions. The first transition is from a monoclinic structure to another monoclinic structure. It maintains the symmetry of the crystal but has important consequences in the physical properties; among others, a band-gap collapse is induced. The second one invo…
Polymorphism of praseodymium orthovanadate under high pressure
Zircon-type $\mathrm{PrV}{\mathrm{O}}_{4}$ has been studied at high pressures and room temperature by means of synchrotron powder x-ray diffraction. At room temperature, we observed the previously known zircon-to-monazite phase transition at 5.5(4) GPa and a second phase transition from monazite to a monoclinic structure at 12.7(8) GPa, which we identified as a $\mathrm{PbW}{\mathrm{O}}_{4}$-III-type phase. This conclusion is supported by our ab initio calculations, which also predict a scheelite-type phase to be stable at high pressure. Motivated by this finding, we subjected zircon-type $\mathrm{PrV}{\mathrm{O}}_{4}$ samples to high pressure (7 GPa) and temperature (600, 800, and 1000 \if…
High-pressure polymorphs of gadolinium orthovanadate: X-ray diffraction, Raman spectroscopy, and ab initio calculations
We present a study of the different high-pressure polymorphs of $\mathrm{GdV}{\mathrm{O}}_{4}$ and its stability. Powder x-ray diffraction and Raman experiments show a phase transition from a zircon- to a scheelite-type structure taking place at 6.8(4) GPa. Ab initio density functional theory calculations support this conclusion. The equations of state of these two phases are reported. In addition, we studied the pressure evolution of the Raman modes for the zircon and scheelite phases, showing good agreement between calculations and experiments. For the sake of completeness, we performed optical-absorption measurements up to 16 GPa, showing a band-gap collapse at the transition point. Beyo…
II–VI and II1−xMnxVI semiconductor nanocrystals formed by the pressure cycle method
II–VI and II1−x Mn x VI nanocrystals were prepared by the pressure cycle method using the Paris–Edinburgh cell. The recovered samples are nanocrystals in the cubic phase zinc-blend (ZB) structure and were characterized using transmission electron microscopy, electron diffraction, X-ray diffraction and Raman scattering. Transmission electron micrographs show that these nanocrystals are nearly spherical with diameters ranging from 20 to 50 nm depending on the sample under investigation. The Raman scattering measurements confirm the existence of II–VI nanocrystals in the cubic phase (ZB). The magnetic properties of Cd0.5Mn0.5Te nanoparticles were found to vary with the particle size and were d…
Lattice dynamics of zircon-type NdVO4 and scheelite-type PrVO4 under high-pressure
Abstract Zircon-type NdVO4 and scheelite-type PrVO4 have been studied by means of Raman spectroscopy up to approximately 20 GPa. In the first compound, zircon-scheelite and scheelite-fergusonite phase transitions are reported at 6.4(3) and 19.6(4) GPa, respectively. In the case of scheelite-type PrVO4, a reversible phase transition to a PbWO4-III structure is observed at 16.8(5) GPa. In both cases, a scheelite-type structure is recovered in a metastable state at low pressures. The pressure evolution of the Raman modes is also reported. Our experimental findings are supported by ab initio calculations, which allowed us to discuss the role of mechanic and dynamical instabilities in the phase …