6533b826fe1ef96bd1284914

RESEARCH PRODUCT

Experimental and theoretical study on the optical properties of LaVO4 crystals under pressure

Daniel ErrandoneaJ.e. Muñoz-santiusteMarco BettinelliPlácida Rodríguez-hernándezUlises R. Rodríguez-mendozaCh. Ferrer-rocaVíctor LavínD. Martinez-garciaAlfonso Muñoz

subject

Phase transitionMaterials scienceCoordination numberPhysics::OpticsGeneral Physics and Astronomychemistry.chemical_element02 engineering and technologyZIRCON-TYPE LAVO4010402 general chemistry01 natural sciencesNeodymiumMolecular physicsCrystalsymbols.namesakeEU3+ IONSEmission spectrumPhysical and Theoretical ChemistryAbsorption (electromagnetic radiation)AB-INITIO021001 nanoscience & nanotechnologyRARE-EARTH IONS0104 chemical scienceschemistrysymbolsZIRCON-TYPE LAVO4 RARE-EARTH IONS AB-INITIO EU3+ IONS0210 nano-technologyLuminescenceRaman spectroscopy

description

We report optical absorption and luminescence measurements in pure and trivalent neodymium (Nd3+) doped LaVO4 crystals up to 25 GPa. Nd3+ luminescence has been employed as a tool to follow the structural changes in the crystal. We also present band-structure and crystal-field calculations that provide the theoretical framework to accurately explain the observed experimental results. In particular, both optical absorption and luminescence measurements evidence that a phase transition takes place close to 12 GPa. They also provide information on the pressure dependence of the band-gap as well as the emission lines under compression. We found drastic changes in the optical properties of LaVO4 when the phase transition to a BaWO4-II structure occurs, which can be related to changes in the coordination number of vanadium ions and in the local sites of Nd3+. Reported results are analyzed in comparison with those of previous X-ray diffraction and Raman experiments, as well as with the features of related compounds. For the first time, a consistent picture is reported explaining the behavior of the optical and electronic properties of LaVO4 at high-pressures.

10.1039/c8cp04701dhttp://hdl.handle.net/11562/999508