6533b7cffe1ef96bd1258dea

RESEARCH PRODUCT

In vivo Evaluation of [225Ac]Ac-DOTAZOL for α-Therapy of Bone Metastases

Nicole BausbacherNina PfannkuchenFrank RöschMatthias MiedererStefanie Pektor

subject

PharmacologyKidneymedicine.medical_specialtyBiodistributionbusiness.industryPharmacology030218 nuclear medicine & medical imaging03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicine.anatomical_structureZoledronic acidchemistryIn vivo030220 oncology & carcinogenesisToxicityDOTAMedicineRadiology Nuclear Medicine and imagingHistopathologybusinessEx vivomedicine.drug

description

Background Conjugates of bisphosphonates with macrocyclic chelators possess high potential in bone targeted radionuclide imaging and therapy. DOTAZOL, zoledronic acid conjugated to DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), demonstrated promising results in vivo in small animals as well as in first patient applications using 68Ga for diagnosis via PET and the lowenergy β-emitter 177Lu for therapy of painful bone metastases. In consideration of the fact that targeted α-therapy probably offers various advantages over the use of β--emitters, the 225Ac-labelled derivative [225Ac]Ac-DOTAZOL was synthesized and evaluated in vivo. Here, we report on radiolabelling and biodistribution of [225Ac]Ac-DOTAZOL in healthy Wistar rats. Methods DOTAZOL was labelled with 225Ac and injected without further purification into the tail vein with activities of 404 ± 47 kBq per animal. Ex vivo biodistribution studies were performed in healthy Wistar rats at 1 hour, 24 hours, 5 days and 10 days post injection. The accumulation of [225Ac]Ac- DOTAZOL on healthy bone and soft tissue organs was determined in terms of SUV. The results were compared to those of other radiolabelled bisphosphonates such as [68Ga]Ga-DOTAZOL and [177Lu]Lu- DOTAZOL. A group of 7 animals was observed over a period of 3 month after application of 394 kBq ± 10 kBq of [225Ac]Ac-DOTAZOL for signs of toxicity. After 3 months, kidneys were microscopically analysed for signs of chronic kidney damage. Results Radiolabelling of DOTAZOL with 225Ac at 98 °C provided radiochemical yields ≥98 % within 30 minutes. [225Ac]Ac-DOTAZOL showed high femur uptake (SUVfemur = 4.99 ± 0.97, 10 d p.i.), which was comparable to that of other Me(III)-DOTAZOL derivatives. Ratios between bone uptake and blood pool activity reached levels of 5, 940, 2181 and 2409 at 1 hour, 24 hours, 5 days and 10 days post injection. During the observation period of the first two month no toxicity was observed clinically. Histopathology of kidneys after 3 month revealed significant tubular damage in most of the animals. Conclusion [225Ac]Ac-DOTAZOL repeats the well-known pharmacology of DOTAZOL derivatives in preclinical evaluations. It thus may be considered for translational application together with strategies to reduce renal toxicity.

https://doi.org/10.2174/1874471011666180604083911