6533b7cffe1ef96bd1258e6a

RESEARCH PRODUCT

Anodic abatement of organic pollutants in water in micro reactors

Chiara GuariscoChristian AmatoreGiuseppe SilvestriLaurent ThouinAlessandro GaliaCatherine SellaGiuseppe FilardoOnofrio Scialdone

subject

General Chemical EngineeringOxalic acidInorganic chemistrychemistry.chemical_element02 engineering and technologyElectrolyteWastewater treatment010402 general chemistryElectrochemistry01 natural sciencesAnalytical Chemistrylaw.inventionchemistry.chemical_compoundlaw[CHIM.ANAL]Chemical Sciences/Analytical chemistryElectrochemistryMicro deviceBoronMicro reactorComputingMilieux_MISCELLANEOUSElectrochemical abatementSettore ING-IND/27 - Chimica Industriale E Tecnologica021001 nanoscience & nanotechnologyOxidation of organic6. Clean waterCathode0104 chemical sciencesAnode[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrychemistry13. Climate actionElectrodeMicroreactor0210 nano-technologyBDD

description

The electrochemical oxidation of oxalic acid (OA) was performed in a micro flow cell equipped with a boron doped diamond (BDD) anode. This preliminary study demonstrates that a flow cell with a micrometric distance between the cathode and the anode can be used to perform the electrochemical treatment of waters contaminated by organic pollutants in the absence of added supporting electrolytes with high abatements. The effect of the distance between the cathode and the anode, the flow rate and the current density on the abatement of oxalic acid and on the current efficiency was in particular studied.

10.1016/j.jelechem.2009.10.031https://hal.archives-ouvertes.fr/hal-02374986