6533b7cffe1ef96bd1258eda

RESEARCH PRODUCT

Dynamic Response of a Rigital Displacement Motor Operating with Various Displacement Strategies

Sondre NordåsMichael M. BeckTorben Ole AndersenMorten Kjeld Ebbesen

subject

0209 industrial biotechnologyExperimental validationControl and OptimizationSteady state (electronics)Digital displacement motorComputer scienceEnergy Engineering and Power Technology02 engineering and technologyVariable displacement01 natural scienceslcsh:Technologylaw.inventionCylinder (engine)PistonTransient response020901 industrial engineering & automationlawControl theoryexperimental validation0103 physical sciencesCylinderDisplacement (orthopedic surgery)Stroke (engine)Transient responsedisplacement strategiesElectrical and Electronic Engineeringsteady-state response010301 acousticsEngineering (miscellaneous)Steady-state responseRenewable Energy Sustainability and the Environmentlcsh:TModelingmodelingDisplacement strategiestransient responseHydraulic cylinderVDP::Teknologi: 500digital displacement motordigital displacement motor; displacement strategies; transient response; steady-state response; modeling; experimental validationTransient (oscillation)Energy (miscellaneous)

description

Digital displacement technology has the potential of revolutionizing the performance of hydraulic piston pumps and motors. Instead of connecting each cylinder chamber to high and low pressure in conjunction with the shaft position, two electrically-controlled on/off valves are connected to each chamber. This allows for individual cylinder chamber control. Variable displacement can be achieved by using different displacement strategies, like for example the full stroke, partial stroke, or sequential partial stroke displacement strategy. Each displacement strategy has its transient and steady-state characteristics. This paper provides a detailed simulation analysis of the transient and steady-state response of a digital displacement motor running with various displacement strategies. The non-linear digital displacement motor model is verified by experimental work on a radial piston motor.

10.3390/en12091737http://hdl.handle.net/11250/2637431