6533b7cffe1ef96bd12590b4

RESEARCH PRODUCT

MAD2 depletion triggers premature cellular senescence in human primary fibroblasts by activating a P53 pathway preventing aneuploid cells propagation.

Tiziana SchillaciAldo Di LeonardoLaura LentiniViviana Barra

subject

Genome instabilityCyclin-Dependent Kinase Inhibitor p21Cell cycle checkpointMad2PhysiologyClinical BiochemistryMAD2 depletion Aneuploidy Premature cellular senescence TP53Cell Cycle ProteinsBiologyCyclin-dependent kinaseChromosome instabilityChromosomal InstabilityTumor Suppressor Protein p14ARFHumansGene SilencingRNA Small InterferingMitosisCells CulturedCellular SenescenceCell ProliferationCalcium-Binding ProteinsCell BiologyCell Cycle CheckpointsFibroblastsAneuploidybeta-GalactosidaseCell biologyRepressor ProteinsSpindle checkpointSettore BIO/18 - GeneticaGene Expression RegulationMad2 Proteinsbiology.proteinM Phase Cell Cycle CheckpointsTumor Suppressor Protein p53Cell agingSignal Transduction

description

The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that ensures faithful chromosome segregation during mitosis and its failure can result in aneuploidy. Previously, it was suggested that reduction of the MAD2 gene, encoding a major component of the SAC, induced aneuploidy in human tumor cells. However, tumor cell lines contain multiple mutations that might affect or exacerbate the cellular response to Mad2 depletion. Thus, the scenario resulting by Mad2 depletion in primary human cells could be different and more complex that the one depicted so far. We used primary human fibroblasts (IMR90) and epithelial breast cells (MCF10A) to gain further insight on the effects of genomic instability caused by transient Mad2 depletion. To this aim we depleted Mad2 by RNAi to a level shown by Mad2 haplo-insufficient cells and found that induced aneuploidy caused premature cellular senescence in IMR90 cells. IMR90 cells showed typical features of senescent cells, like senescence-associated (SA) beta galactosidase expression, including up-regulation of p53 and p14ARF proteins and of p21(waf1) as well, but not of p16(INK4A) cyclin-dependent kinase (Cdk) inhibitor. In contrast, after MAD2 post-transcriptional silencing MCF10A cells in which the INK4A/ARF locus is deleted, showed both aneuploidy and a small increase of p53 and p21(waf1) proteins, but not premature cellular senescence. Finally, our results provides an explanation of how a p53 controlled pathway, involving initially p21(waf1) and then p14ARF, could minimize the occurrence of genomic alterations derived from chromosome instability induced by low amounts of MAD2 protein.

10.1002/jcp.24030http://hdl.handle.net/10447/62060