0000000000077368

AUTHOR

Viviana Barra

0000-0002-7186-4485

showing 31 related works from this author

DNA Methyltransferase1 post-transcriptional silencing induces aneuploidy and cell cycle arrest in human cells.

2009

The regulation of chromatin structure is a dynamic and complex process that is modulated by epigenetic mechanisms. Malfunctioning of these processes can cause gene expression alteration and could compromise important events such as chromosome condensation and segregation. Imbalance in cytosine methylation and deregulation of DNA-methyltransferases (DNMTs), and of DNMT1 in particular, is frequent in human cancers. To investigate DNMT1 implication in the generation of aneuploidy we evaluated the effects of its depletion by RNA-interference both in primary human cells (IMR90) and in near diploid human tumor (HCT116) cells. Posttranscriptional silencing of DNMT1 induced aneuploidy, cell prolife…

Settore BIO/18 - GeneticaDNMT1 aneuploidy
researchProduct

MAD2 depletion triggers premature cellular senescence in human primary fibroblasts by activating a P53 pathway preventing aneuploid cells propagation.

2012

The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that ensures faithful chromosome segregation during mitosis and its failure can result in aneuploidy. Previously, it was suggested that reduction of the MAD2 gene, encoding a major component of the SAC, induced aneuploidy in human tumor cells. However, tumor cell lines contain multiple mutations that might affect or exacerbate the cellular response to Mad2 depletion. Thus, the scenario resulting by Mad2 depletion in primary human cells could be different and more complex that the one depicted so far. We used primary human fibroblasts (IMR90) and epithelial breast cells (MCF10A) to gain further insight on the effects …

Genome instabilityCyclin-Dependent Kinase Inhibitor p21Cell cycle checkpointMad2PhysiologyClinical BiochemistryMAD2 depletion Aneuploidy Premature cellular senescence TP53Cell Cycle ProteinsBiologyCyclin-dependent kinaseChromosome instabilityChromosomal InstabilityTumor Suppressor Protein p14ARFHumansGene SilencingRNA Small InterferingMitosisCells CulturedCellular SenescenceCell ProliferationCalcium-Binding ProteinsCell BiologyCell Cycle CheckpointsFibroblastsAneuploidybeta-GalactosidaseCell biologyRepressor ProteinsSpindle checkpointSettore BIO/18 - GeneticaGene Expression RegulationMad2 Proteinsbiology.proteinM Phase Cell Cycle CheckpointsTumor Suppressor Protein p53Cell agingSignal Transduction
researchProduct

Identification of pathways involved in aneuploidy onset and its tolerance using a DNA microarray approach

2014

aneuploidy DNA microarray .Settore BIO/18 - Genetica
researchProduct

Phosphorylation of CENP-A on serine 7 does not control centromere function.

2019

CENP-A is the histone H3 variant necessary to specify the location of all eukaryotic centromeres via its CENP-A targeting domain and either one of its terminal regions. In humans, several post-translational modifications occur on CENP-A, but their role in centromere function remains controversial. One of these modifications of CENP-A, phosphorylation on serine 7, has been proposed to control centromere assembly and function. Here, using gene targeting at both endogenous CENP-A alleles and gene replacement in human cells, we demonstrate that a CENP-A variant that cannot be phosphorylated at serine 7 maintains correct CENP-C recruitment, faithful chromosome segregation and long-term cell viab…

0301 basic medicine1.1 Normal biological development and functioningScience[SDV]Life Sciences [q-bio]CentromereGeneral Physics and Astronomy02 engineering and technology[SDV.BC]Life Sciences [q-bio]/Cellular Biologymacromolecular substancesBiologyGeneral Biochemistry Genetics and Molecular BiologyArticleSerineChromosome segregation03 medical and health sciencesHistone H3Underpinning researchCentromereGeneticsHumansViability assayPhosphorylationlcsh:ScienceComputingMilieux_MISCELLANEOUSCancerGene EditingMultidisciplinaryQGene targetingGeneral Chemistry021001 nanoscience & nanotechnologyCell biologySettore BIO/18 - Genetica030104 developmental biologyChromosome segragationHela CellsPhosphorylationEpigeneticslcsh:QGeneric health relevance0210 nano-technologyFunction (biology)Centromere Protein AHumanHeLa CellsNature communications
researchProduct

Pyrazole[3,4-d]pyrimidine derivatives loaded into halloysite as potential CDK inhibitors

2021

Uncontrolled cell proliferation is a hallmark of cancer as a result of rapid and deregulated progression through the cell cycle. The inhibition of cyclin-dependent kinases (CDKs) activities is a promising therapeutic strategy to block cell cycle of tumor cells. In this work we reported a new example of nanocomposites based on halloysite nanotubes (HNTs)/pyrazolo[3,4-d]pyrimidine derivatives (Si306 and Si113) as anticancer agents and CDK inhibitors. HNTs/Si306 and HNTs/Si113 nanocomposites were synthesized and characterized. The release kinetics were also investigated. Antitumoral activity was evaluated on three cancer cell lines (HeLa, MDA-MB-231 and HCT116) and the effects on cell cycle ar…

Cell cycle checkpointPyrimidinePharmaceutical Science02 engineering and technologyCDK inhibitors; Halloysite; Nanocomposites; Pyrazolo[34-d]pyrimidine derivatives; Cell Cycle Checkpoints; Cell Line Tumor; Clay; Humans; Pyrazoles; PyrimidinesPyrazolo[34-d]pyrimidine derivativesPyrazole030226 pharmacology & pharmacyCell LineNanocompositesHeLa03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCyclin-dependent kinaseCell Line TumorPyrazolo[3HumansSettore BIO/06 - Anatomia Comparata E CitologiaSettore CHIM/02 - Chimica FisicaTumorbiologyChemistryKinaseCell growth4-d]pyrimidine derivativesHalloysiteSettore CHIM/06 - Chimica OrganicaCell Cycle CheckpointsCell cycle021001 nanoscience & nanotechnologybiology.organism_classificationSettore BIO/18 - GeneticaPyrimidinesSettore CHIM/03 - Chimica Generale E Inorganicabiology.proteinCancer researchClayPyrazoles0210 nano-technologyCDK inhibitors
researchProduct

Chromosomal instability promoted by RB depletion relied neither on p53 nor SAC dysfunction in HCT116 tumor cells

2008

Settore BIO/18 - GeneticaRNA interferenceSAC
researchProduct

Losing DNA methylation at repetitive elements and breaking bad

2021

Abstract Background DNA methylation is an epigenetic chromatin mark that allows heterochromatin formation and gene silencing. It has a fundamental role in preserving genome stability (including chromosome stability) by controlling both gene expression and chromatin structure. Therefore, the onset of an incorrect pattern of DNA methylation is potentially dangerous for the cells. This is particularly important with respect to repetitive elements, which constitute the third of the human genome. Main body Repetitive sequences are involved in several cell processes, however, due to their intrinsic nature, they can be a source of genome instability. Thus, most repetitive elements are usually meth…

EpigenomicsGenome instabilityHeterochromatinSatellitesReviewRepetitive DNABiologyQH426-47003 medical and health sciencesLINE-10302 clinical medicineDNA hypomethylationGeneticsHumansEpigeneticsAutism spectrum disorderRepeated sequenceMolecular BiologyRepetitive Sequences Nucleic Acid030304 developmental biologyCancerGenetics0303 health sciencesHereditary diseasesDNA MethylationChromatinChromatinSettore BIO/18 - GeneticaLong Interspersed Nucleotide ElementsICF syndromeDNA methylationHuman genomeAlzheimer’s disease030217 neurology & neurosurgeryNeuropsychiatric disordersDNA hypomethylationEpigenetics & Chromatin
researchProduct

RNA interference of MAD2 and BUBR1 genes causes mitotic spindle alterations, aneuploidy and cell cycle arrest p53-dependent.

2009

The Spindle Assembly Checkpoint (SAC) is a cellular surveillance mechanism that functions to ensure faithful chromosome segregation during mitosis. Failure of this checkpoint or alteration in expression of SAC proteins (MAD2, BUB1, BUBR1 and others) can result in aneuploidy, a state of having abnormal numbers of chromosomes. MAD2 haploinsufficiency resulted in aneuploidy in MEFs and colon cancer cells in culture. Thus, spindle checkpoint components might have additional functions not-checkpoint-related functions that when disrupted contribute to tumorigenesis. Here we investigated the effects of MAD2 or BUBR1 transcriptional silencing in HCT-116 cells. Transient reduction of MAD2 (40%) and …

Settore BIO/18 - GeneticaMAD2 BUBR1 mitotic spindle
researchProduct

A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation

2023

During embryonic development stem cells undergo the differentiation process so that they can specialise for different functions within the organism. Complex programs of gene transcription are crucial for this process to happen. Epigenetic modifications and the architecture of chromatin in the nucleus, by the formation of specific regions of active as well as inactive chromatin, allow the coordinated regulation of the genes for each cell fate. In this mini review, we discuss the current knowledge regarding the regulation of three-dimensional chromatin structure during neuronal differentiation. We also focus on the role played in neurogenesis by the nuclear lamina that ensures the tethering o…

Settore BIO/18 - GeneticaepigeneticsGeneticsneuronal differentiationGenetics (clinical)nuclear laminachromatin organization
researchProduct

Transient and stable depletion of RB induce different expression of genes involved in epigenetic modifications.

2008

Settore BIO/18 - GeneticaRNA interference pRB
researchProduct

Proliferation of aneuploid cells induced by CENP-E depletion is counteracted by the p14ARF tumor suppressor

2018

The spindle assembly checkpoint (SAC) is a cellular surveillance mechanism that ensures the fidelity of chromosomes segregation. Reduced expression of some of its components weakens the SAC and induces chromosome instability and aneuploidy, which are both well-known hallmarks of cancer cells. Centromere protein-E (CENP-E) is a crucial component of the SAC and its function is to facilitate kinetochore microtubule attachment required to achieve and maintain chromosome alignment. The present study investigates the possible role of p14ARF as a controller of aneuploid cells proliferation. We used RNA interference to induce aneuploidy by partial depletion of CENP-E in human primary fibroblasts (I…

0106 biological sciences0301 basic medicineCellAneuploidyHCT116 cellBiologyP14ARF01 natural sciences03 medical and health sciencesp14arfChromosome instabilityCentromereGeneticsmedicineMolecular BiologyChromosomeGeneral MedicineAneuploidymedicine.diseaseCell biologySettore BIO/18 - GeneticaSpindle checkpoint030104 developmental biologymedicine.anatomical_structureRNAiCancer cellCENP-E010606 plant biology & botanyMolecular Genetics and Genomics
researchProduct

DNA demethylation caused By 5-Aza-2'-Deoxycytidine induces mitotic alterations and aneuploidy

2016

Aneuploidy, the unbalanced number of chromosomes in a cell, is considered a prevalent form of genetic instability and is largely acknowledged as a condition implicated in tumorigenesis. Epigenetic alterations like DNA hypomethylation have been correlated with cancer initiation/progression. Furthermore, a growing body of evidence suggests the involvement of epigenome-wide disruption as a cause of global DNA hypomethylation in aneuploidy generation. Here, we report that the DNA hypomethylating drug 5-aza-2′-deoxycytidine (DAC), affects the correct ploidy of nearly diploid HCT-116 human cells by altering the methylation pattern of the chromosomes. Specifically, we show that a DAC-induced reduc…

0301 basic medicineAntimetabolites Antineoplastic5-aza-2'-deoxycytidine (DAC); Aneuploidy; Chromosome methylation pattern; Chromosome Section; DNA demethylation; OncologyBlotting WesternAneuploidyMitosisApoptosisBiologymedicine.disease_causeDecitabineReal-Time Polymerase Chain ReactionChromosome Section03 medical and health scienceschromosome methylation patternChromosome instabilitymedicineTumor Cells CulturedHumansEpigeneticsaneuploidyRNA Messenger5-aza-2′-deoxycytidine (DAC)Cell ProliferationGeneticsChromosome AberrationsPloidiesReverse Transcriptase Polymerase Chain ReactionDNA Methylationmedicine.disease5-aza-2'-deoxycytidine (DAC)Gene Expression Regulation NeoplasticResearch Paper: ChromosomeSettore BIO/18 - Genetica030104 developmental biologyDNA demethylationOncologyMicroscopy FluorescenceDNA methylationColonic NeoplasmsCytogenetic AnalysisCancer researchDNA demethylationAzacitidinePloidyCarcinogenesisDNA hypomethylation
researchProduct

Transcriptomic Changes Following Partial Depletion of CENP-E in Normal Human Fibroblasts

2021

The centromere is a fundamental chromosome structure in which the macro-molecular kinetochore assembles and is bound by spindle microtubules, allowing the segregation of sister chromatids during mitosis. Any alterations in kinetochore assembly or functioning or kinetochore–microtubule attachments jeopardize chromosome stability, leading to aneuploidy, a common feature of cancer cells. The spindle assembly checkpoint (SAC) supervises this process, ensuring a faithful segregation of chromosomes. CENP-E is both a protein of the kinetochore and a crucial component of the SAC required for kinetochore–microtubule capture and stable attachment, as well as congression of chromosomes to the metaphas…

CENP‐EKinetochoreKinetochore assemblyAneuploidyQH426-470Biologymedicine.diseasecancer progressionArticleSpindle apparatusCell biologySpindle checkpointSettore BIO/18 - Geneticaexpression profilingcentromereCentromereGeneticsmedicineSister chromatidsCENP-EaneuploidyTranscriptomeMitosisGenetics (clinical)Genes
researchProduct

P14ARF: The Absence that Makes the Difference

2020

P14ARF is a tumor suppressor encoded by the CDKN2a locus that is frequently inactivated in human tumors. P14ARF protein quenches oncogene stimuli by inhibiting cell cycle progression and inducing apoptosis. P14ARF functions can be played through interactions with several proteins. However, the majority of its activities are notoriously mediated by the p53 protein. Interestingly, recent studies suggest a new role of p14ARF in the maintenance of chromosome stability. Here, we deepened this new facet of p14ARF which we believe is relevant to its tumor suppressive role in the cell. To this aim, we generated a monoclonal HCT116 cell line expressing the p14ARF cDNA cloned in the piggyback vector …

0301 basic medicinecongenital hereditary and neonatal diseases and abnormalitiesCENP‐Elcsh:QH426-470Cellp14ARFBiologylaw.invention03 medical and health sciences0302 clinical medicinep14arfCDKN2AlawComplementary DNAGeneticsmedicineaneuploidyGenetics (clinical)OncogeneARFP14eye diseasesCell biologySettore BIO/18 - Geneticalcsh:Genetics030104 developmental biologymedicine.anatomical_structureApoptosis030220 oncology & carcinogenesisGSK923295MonoclonalSuppressorCENP-Esense organsGenes
researchProduct

pRb loss and chromosomal instability in human cells.

2009

pRb loss and chromosomal instability in human cells. Recent studies suggest that Retinoblastoma tumor suppressor (RB) plays important roles in the prevention of chromosomal instability by regulating genes that control cell cycle progression and mitotic events. We investigated the effects of stable post-transcriptional silencing of RB in primary human fibroblasts (IMR90) and in near-diploid colon cancer cells (HCT116) focusing on chromosome missegregation mechanisms. Stable depletion of pRb was achieved by infection with the retroviral vector MSCV-LMP670 encoding a microRNA (miR670) targeting RB transcript. Cytogenetic, immunofluorescence microscopy and time-lapse video-microscopy analyses s…

Settore BIO/18 - GeneticaRB aneuploidy
researchProduct

Aneuploidy induced by MAD2 haploinsufficiency triggers premature senescence in human primary fibroblast

2009

Aneuploidy MAD2Senescence
researchProduct

Specific Irreversible Cell-Cycle Arrest and Depletion of Cancer Cells Obtained by Combining Curcumin and the Flavonoids Quercetin and Fisetin.

2022

Background: Induced senescence could be exploited to selectively counteract the proliferation of cancer cells and target them for senolysis. We examined the cellular senescence induced by curcumin and whether it could be targeted by fisetin and quercetin, flavonoids with senolytic activity. Methods: Cell-cycle profiles, chromosome number and structure, and heterochromatin markers were evaluated via flow cytometry, metaphase spreads, and immunofluorescence, respectively. The activation of p21waf1/cip1 was assessed via RT-qPCR and immunoblotting. Senescent cells were detected via SA-β-Galactosidase staining. Results: We report that curcumin treatment specifically triggers senescence in cancer…

Cyclin-Dependent Kinase Inhibitor p21FlavonoidsDNA methylationsenescenceCurcuminFlavonolsCell Cycle Checkpointssenescence; curcumin; senolytics; heterochromatin; DNA methylation; H3K9 trimethylation; SAHF; fisetin; quercetinSAHFSettore BIO/18 - GeneticaH3K9 trimethylationHeterochromatinNeoplasmssenolyticsGeneticsQuercetinGenetics (clinical)Genes
researchProduct

Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons

2020

Cystic fibrosis (CF) is caused by mutations in the gene encoding the transmembrane conductance regulator (CFTR) protein. Some CF patients are compound heterozygous or homozygous for nonsense mutations in the CFTR gene. This implies the presence in the transcript of premature termination codons (PTCs) responsible for a truncated CFTR protein and a more severe form of the disease. Aminoglycoside and PTC124 derivatives have been used for the read-through of PTCs to restore the full-length CFTR protein. However, in a precision medicine framework, the CRISPR/dCas13b-based molecular tool &ldquo

congenital hereditary and neonatal diseases and abnormalitiesRNA editingMutantNonsense mutationSettore BIO/11 - Biologia MolecolareBiologyCRISPR/dCas13bCatalysislcsh:Chemistrycystic fibrosisInorganic ChemistryGuide RNASettore BIO/06 - Anatomia Comparata E CitologiaPhysical and Theoretical Chemistrylcsh:QH301-705.5Molecular BiologyGeneSpectroscopyMessenger RNApremature termination codons (PTCs)Organic ChemistryGeneral Medicinerespiratory systemStop codonTransmembrane proteinrespiratory tract diseasesComputer Science ApplicationsCell biologySettore BIO/18 - Geneticalcsh:Biology (General)lcsh:QD1-999RNA editingInternational Journal of Molecular Sciences
researchProduct

The dark side of centromeres: types, causes and consequences of structural abnormalities implicating centromeric DNA

2018

Centromeres are the chromosomal domains required to ensure faithful transmission of the genome during cell division. They have a central role in preventing aneuploidy, by orchestrating the assembly of several components required for chromosome separation. However, centromeres also adopt a complex structure that makes them susceptible to being sites of chromosome rearrangements. Therefore, preservation of centromere integrity is a difficult, but important task for the cell. In this review, we discuss how centromeres could potentially be a source of genome instability and how centromere aberrations and rearrangements are linked with human diseases such as cancer.

0301 basic medicineGenome instabilityCell division[SDV]Life Sciences [q-bio]ScienceCentromereGeneral Physics and AstronomyAneuploidy[SDV.BC]Life Sciences [q-bio]/Cellular BiologyReview ArticleBiologyChromosomeModels BiologicalGenomeChromosomesGenomic InstabilityGeneral Biochemistry Genetics and Molecular Biology03 medical and health scienceschemistry.chemical_compoundCentromeremedicineHumansDiseaselcsh:ScienceChromosome separationComputingMilieux_MISCELLANEOUSGeneticsMultidisciplinaryQChromosomeDNAGeneral Chemistrymedicine.diseaseSettore BIO/18 - Genetica030104 developmental biologychemistrylcsh:QDNANature Communications
researchProduct

CENP-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly

2016

SummaryHuman centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive alphoid DNA sequences. By inducing rapid, complete degradation of endogenous CENP-A, we now demonstrate that once the first steps of centromere assembly have been completed in G1/S, continued CENP-A binding is not required for maintaining kinetochore attachment to centromeres or for centromere function in the next mitosis. Degradation of CENP-A prior to kinetochore assembly is found to block deposition of CENP-C and CENP-N, but not CENP-T, thereby producing defective kinetochores and failure of chromosome segregation. Without the continuing presence of CENP-A, CENP-B binding …

0301 basic medicineChromosomal Proteins Non-HistoneMedical PhysiologyEpigenesis GeneticChromosome segregationModelsChromosome SegregationKinetochoresGeneticsTumormitosiKinetochorekinetochoreCell biologyChromatinChromosomal Proteinsprotein degradationCENP-ACENP-BepigeneticCENP-C1.1 Normal biological development and functioningKinetochore assemblyCentromerechromosome segregationMitosismacromolecular substancesBiologyProtein degradationModels BiologicalGeneral Biochemistry Genetics and Molecular BiologyArticleCell Line03 medical and health sciencesGeneticUnderpinning researchCentromere Protein ACell Line TumorCentromereGeneticsHumansMitosisNon-HistoneBiologicalSettore BIO/18 - Genetica030104 developmental biologyGeneric health relevanceBiochemistry and Cell BiologyauxinCentromere Protein AEpigenesisCell Reports
researchProduct

DNMT1 SILENCING ELICITS DIFFERENT CELL CYCLE RESPONSES IN PRIMARY VERSUS TUMOR CELLS AND IS ASSOCIATED WITH ANEUPLOIDY GENERATION

2011

Settore BIO/18 - GeneticaDNMT1TUMOR CELLSANEUPLOIDY GENERATION
researchProduct

Dicer prevents genome instability in response to replication stress

2019

Dicer, an endoribonuclease best-known for its role in microRNA biogenesis and RNA interference pathway, has been shown to play a role in the DNA damage response and repair of double-stranded DNA breaks (DSBs) in mammalian cells. However, it remains unknown whether Dicer is also important to preserve genome integrity upon replication stress. To address this question, we focused our study on common fragile sites (CFSs), which are susceptible to breakage after replication stress. We show that inhibition of the Dicer pathway leads to an increase in CFS expression upon induction of replication stress and to an accumulation of 53BP1 nuclear bodies, indicating transmission of replication-associate…

0301 basic medicineGenome instabilityreplication stressDNA damageChromosomal fragile siteBiologygenomic instabilitycommon fragile siteCell biologySettore BIO/18 - Genetica03 medical and health sciences030104 developmental biology0302 clinical medicineOncology030220 oncology & carcinogenesisFANCD2biology.proteinDicer PathwayMitosiscommon fragile sitesDroshaResearch PaperDicerDicerOncotarget
researchProduct

The tumor suppressor p14ARF hampers proliferation of aneuploid cells induced by CENP-E partial depletion

The Spindle Assembly Checkpoint (SAC) is a cellular surveillance mechanism that ensures faithfully segregation of chromosomes. Reduced expression of some of its components weakens the SAC and induces chromosome instability and aneuploidy, both hallmarks of tumor cells. Centromere Protein-E (CENP-E) is a crucial component of the SAC and facilitates kinetochore microtubule attachment required to achieve and maintain chromosome alignment. To investigate the possible role of p14ARF on aneuploid cells proliferation we induced aneuploidy in primary human fibroblasts (IMR90) and in near diploid tumor cells (HCT116) by partial depletion of CENP-E obtained by RNA interference. Our results show that …

Settore BIO/18 - GeneticaAneuploidy CENP-E p14ARF HCT116 cells RNAi
researchProduct

FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability

2021

Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and pr…

0301 basic medicineGenome instabilitymusculoskeletal diseasesTranscription GeneticQH301-705.5RegulatorMedicine (miscellaneous)MitochondrionBiology[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral Biochemistry Genetics and Molecular BiologyOxidative PhosphorylationArticle03 medical and health sciences0302 clinical medicineTranscription (biology)Stress Physiologicalhemic and lymphatic diseasesGene expressionFANCD2HumansBiology (General)GeneUbiquitinsChromosomal fragile siteChromosome Fragile SitesChromosome FragilityFanconi Anemia Complementation Group D2 ProteinDNA damage and repair[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyHCT116 CellsCell biologyMitochondriaSettore BIO/18 - Genetica030104 developmental biologyGene Expression Regulation030220 oncology & carcinogenesisUnfolded Protein ResponseGeneral Agricultural and Biological SciencesDNA Damage
researchProduct

p14ARFPrevents Proliferation of Aneuploid Cells by Inducing p53-Dependent Apoptosis

2015

Weakening the Spindle Assembly Checkpoint by reduced expression of its components induces chromosome instability and aneuploidy that are hallmarks of cancer cells. The tumor suppressor p14ARF is overexpressed in response to oncogenic stimuli to stabilize p53 halting cell progression. Previously, we found that lack or reduced expression of p14ARF is involved in the maintenance of aneuploid cells in primary human cells, suggesting that it could be part of a pathway controlling their proliferation. To investigate this aspect further, p14ARF was ectopically expressed in HCT116 cells after depletion of the Spindle Assembly Checkpoint MAD2 protein that was used as a trigger for aneuploidy. p14ARF…

0301 basic medicineMad2PhysiologyClinical BiochemistryCell BiologyBiologyCell biology03 medical and health sciencesSpindle checkpoint030104 developmental biologyp14arfApoptosisChromosome instabilityCancer cellCancer researchEctopic expressionMitosisJournal of Cellular Physiology
researchProduct

Chromatin epigenetics and nuclear lamina keep the nucleus in shape: Examples from natural and accelerated aging.

2022

As the repository of genetic information, the cell nucleus must protect DNA integrity from mechanical stresses. The nuclear lamina, which resides within the nuclear envelope (NE), is made up of lamins, intermediate filaments bound to DNA. The nuclear lamina provides the nucleus with the ability to deal with inward as well as outward mechanical stimuli. Chromatin, in turn, through its degrees of compaction, shares this role with the nuclear lamina, thus, ensuring the plasticity of the nucleus. Perturbation of chromatin condensation or the nuclear lamina has been linked to a plethora of biological conditions, that range from cancer and genetic diseases (laminopathies) to aging, both natural a…

Settore BIO/18 - Geneticanuclear mechanicsepigeneticsagingHGPSCell BiologyGeneral Medicinenuclear laminaBiology of the cellREFERENCES
researchProduct

Bypass of cell cycle arrest induced by transient DNMT1 post-transcriptional silencing triggers aneuploidy in human cells

2012

Abstract Background Aneuploidy has been acknowledged as a major source of genomic instability in cancer, and it is often considered the result of chromosome segregation errors including those caused by defects in genes controlling the mitotic spindle assembly, centrosome duplication and cell-cycle checkpoints. Aneuploidy and chromosomal instability has been also correlated with epigenetic alteration, however the molecular basis of this correlation is poorly understood. Results To address the functional connection existing between epigenetic changes and aneuploidy, we used RNA-interference to silence the DNMT1 gene, encoding for a highly conserved member of the DNA methyl-transferases. DNMT1…

Genome instabilityCell cycle checkpointDNA damageAneuploidyBiologylcsh:RC254-282BiochemistryChromosome instabilitymedicineCentrosome duplicationEpigeneticsaneuploidylcsh:QH573-671Molecular BiologyGeneticsDNA methylationG1 arrestlcsh:CytologyResearchDNMT1Cell Biologylcsh:Neoplasms. Tumors. Oncology. Including cancer and carcinogensmedicine.diseaseCell biologySettore BIO/18 - GeneticaDNMT1 Aneuploidy epigenetic p14/ARF siRNADNA methylation
researchProduct

Aneuploid IMR90 cells induced by depletion of pRB, DNMT1 and MAD2 show a common gene expression signature

2019

Chromosome segregation defects lead to aneuploidy which is a major feature of solid tumors. How diploid cells face chromosome mis-segregation and how aneuploidy is tolerated in tumor cells are not completely defined yet. Thus, an important goal of cancer genetics is to identify gene networks that underlie aneuploidy and are involved in its tolerance. To this aim, we induced aneuploidy in IMR90 human primary cells by depleting pRB, DNMT1 and MAD2 and analyzed their gene expression profiles by microarray analysis. Bioinformatic analysis revealed a common gene expression profile of IMR90 cells that became aneuploid. Gene Set Enrichment Analysis (GSEA) also revealed gene-sets/pathways that are …

DNA (Cytosine-5-)-Methyltransferase 1AneuploidyBiologyMicroarrayReal-Time Polymerase Chain ReactionRetinoblastoma ProteinCell LineRNA interferenceGene expressionProtein Interaction MappingGeneticsmedicineHumansGeneOligonucleotide Array Sequence AnalysisMicroarray analysis techniquesGene Expression ProfilingBioinformatics analysiChromosomeFibroblastsmedicine.diseaseAneuploidyGene Expression RegulationRNAiMad2 ProteinsDNMT1Cancer researchKIF4ARNA InterferenceTranscriptomeIMR90 human fibroblast
researchProduct

DNMT1 transient silencing induces aneuploidy, premature separated chromatids and centromeric chromatin alterations

2008

Settore BIO/18 - GeneticaDNMT1 aneuploidy
researchProduct

“DNA Methyl transferase 1 post-trascriptional silencing indues aneuploidy and cell cycle arrest in human cells”,

2009

DNMT1 aneuploidy
researchProduct

FANCD2 promotes mitotic rescue from transcription-mediated replication stress in SETX-deficient cancer cells

2022

AbstractReplication stress (RS) is a leading cause of genome instability and cancer development. A substantial source of endogenous RS originates from the encounter between the transcription and replication machineries operating on the same DNA template. This occurs predominantly under specific contexts, such as oncogene activation, metabolic stress, or a deficiency in proteins that specifically act to prevent or resolve those transcription-replication conflicts (TRCs). One such protein is Senataxin (SETX), an RNA:DNA helicase involved in resolution of TRCs and R-loops. Here we identify a synthetic lethal interaction between SETX and proteins of the Fanconi anemia (FA) pathway. Depletion of…

Settore BIO/18 - Geneticafancd2; replication stress; setxreplication stressfancd2Medicine (miscellaneous)setxGeneral Agricultural and Biological SciencesGenome instability Replication stress chromosome missegregationGeneral Biochemistry Genetics and Molecular Biology
researchProduct