6533b859fe1ef96bd12b7737

RESEARCH PRODUCT

FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability

Claude Saint-rufViviana BarraViviana BarraSilvia RaveraPhilippe FernandesViola NähseEnrico CappelliValeria NaimBenoit MiottoMaha Said

subject

0301 basic medicineGenome instabilitymusculoskeletal diseasesTranscription GeneticQH301-705.5RegulatorMedicine (miscellaneous)MitochondrionBiology[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral Biochemistry Genetics and Molecular BiologyOxidative PhosphorylationArticle03 medical and health sciences0302 clinical medicineTranscription (biology)Stress Physiologicalhemic and lymphatic diseasesGene expressionFANCD2HumansBiology (General)GeneUbiquitinsChromosomal fragile siteChromosome Fragile SitesChromosome FragilityFanconi Anemia Complementation Group D2 ProteinDNA damage and repair[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyHCT116 CellsCell biologyMitochondriaSettore BIO/18 - Genetica030104 developmental biologyGene Expression Regulation030220 oncology & carcinogenesisUnfolded Protein ResponseGeneral Agricultural and Biological SciencesDNA Damage

description

Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and promotes CFS gene stability. Mechanistically, we demonstrate that the mitochondrial stress-dependent induction of CFS genes is mediated by ubiquitin-like protein 5 (UBL5), and that a UBL5-FANCD2 dependent axis regulates the mitochondrial UPR in human cells. We propose that FANCD2 coordinates nuclear and mitochondrial activities to prevent genome instability.

10.1038/s42003-021-01647-8https://www.hal.inserm.fr/inserm-03357197