0000000001040598

AUTHOR

Maha Said

0000-0002-8831-9854

showing 2 related works from this author

FANCD2 modulates the mitochondrial stress response to prevent common fragile site instability

2021

Common fragile sites (CFSs) are genomic regions frequently involved in cancer-associated rearrangements. Most CFSs lie within large genes, and their instability involves transcription- and replication-dependent mechanisms. Here, we uncover a role for the mitochondrial stress response pathway in the regulation of CFS stability in human cells. We show that FANCD2, a master regulator of CFS stability, dampens the activation of the mitochondrial stress response and prevents mitochondrial dysfunction. Genetic or pharmacological activation of mitochondrial stress signaling induces CFS gene expression and concomitant relocalization to CFSs of FANCD2. FANCD2 attenuates CFS gene transcription and pr…

0301 basic medicineGenome instabilitymusculoskeletal diseasesTranscription GeneticQH301-705.5RegulatorMedicine (miscellaneous)MitochondrionBiology[SDV.BBM.BM] Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyGeneral Biochemistry Genetics and Molecular BiologyOxidative PhosphorylationArticle03 medical and health sciences0302 clinical medicineTranscription (biology)Stress Physiologicalhemic and lymphatic diseasesGene expressionFANCD2HumansBiology (General)GeneUbiquitinsChromosomal fragile siteChromosome Fragile SitesChromosome FragilityFanconi Anemia Complementation Group D2 ProteinDNA damage and repair[SDV.BBM.BM]Life Sciences [q-bio]/Biochemistry Molecular Biology/Molecular biologyHCT116 CellsCell biologyMitochondriaSettore BIO/18 - Genetica030104 developmental biologyGene Expression Regulation030220 oncology & carcinogenesisUnfolded Protein ResponseGeneral Agricultural and Biological SciencesDNA Damage
researchProduct

FANCD2 promotes mitotic rescue from transcription-mediated replication stress in SETX-deficient cancer cells

2022

AbstractReplication stress (RS) is a leading cause of genome instability and cancer development. A substantial source of endogenous RS originates from the encounter between the transcription and replication machineries operating on the same DNA template. This occurs predominantly under specific contexts, such as oncogene activation, metabolic stress, or a deficiency in proteins that specifically act to prevent or resolve those transcription-replication conflicts (TRCs). One such protein is Senataxin (SETX), an RNA:DNA helicase involved in resolution of TRCs and R-loops. Here we identify a synthetic lethal interaction between SETX and proteins of the Fanconi anemia (FA) pathway. Depletion of…

Settore BIO/18 - Geneticafancd2; replication stress; setxreplication stressfancd2Medicine (miscellaneous)setxGeneral Agricultural and Biological SciencesGenome instability Replication stress chromosome missegregationGeneral Biochemistry Genetics and Molecular Biology
researchProduct