6533b7cffe1ef96bd1259171
RESEARCH PRODUCT
The Role of Osteoprotegerin and Its Ligands in Vascular Function
Eve RigalAlexandre MelouxLuc RochetteYves CottinMarianne ZellerCatherine Vergelysubject
0301 basic medicineAngiogenesismedicine.medical_treatmentReview030204 cardiovascular system & hematologyLigandslcsh:ChemistryTNF-Related Apoptosis-Inducing Ligand0302 clinical medicineReceptorlcsh:QH301-705.5Cellular SenescenceSpectroscopyReceptor Activator of Nuclear Factor-kappa BbiologyChemistryvascular diseaseGeneral MedicineComputer Science ApplicationsProtein Transportmedicine.anatomical_structureCytokineRANKLTumor necrosis factor alphaDisease Susceptibilitymedicine.symptomProtein BindingSignal Transductionmusculoskeletal diseasesProteasome Endopeptidase ComplexEndotheliumendotheliumNeovascularization PhysiologicInflammationCatalysisInorganic ChemistryStructure-Activity Relationship03 medical and health sciencesOsteoprotegerin[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemmedicineAnimalsHumansPhysical and Theoretical ChemistryMolecular BiologyMyocardiumRANK LigandOrganic ChemistryEndothelial Cells030104 developmental biologylcsh:Biology (General)lcsh:QD1-999osteoprotegerinOPG/RANKL/RANKCancer researchbiology.proteinBlood VesselsBiomarkersdescription
International audience; The superfamily of tumor necrosis factor (TNF) receptors includes osteoprotegerin (OPG) and its ligands, which are receptor activators of nuclear factor kappa-B ligand (RANKL) and TNF-related apoptosis-inducing ligand (TRAIL). The OPG/RANKL/RANK system plays an active role in pathological angiogenesis and inflammation as well as cell survival. It has been demonstrated that there is crosstalk between endothelial cells and osteoblasts during osteogenesis, thus establishing a connection between angiogenesis and osteogenesis. This OPG/RANKL/RANK/TRAIL system acts on specific cell surface receptors, which are then able to transmit their signals to other intracellular components and modify gene expression. Cytokine production and activation of their receptors induce mechanisms to recruit monocytes and neutrophils as well as endothelial cells. Data support the role of an increased OPG/RANKL ratio as a possible marker of progression of endothelial dysfunction in metabolic disorders in relationship with inflammatory marker levels. We review the role of the OPG/RANKL/RANK triad in vascular function as well as molecular mechanisms related to the etiology of vascular diseases. The potential therapeutic strategies may be very promising in the future.
year | journal | country | edition | language |
---|---|---|---|---|
2019-02-01 |