6533b7cffe1ef96bd1259a26

RESEARCH PRODUCT

Heyting-valued interpretations for Constructive Set Theory

Nicola Gambino

subject

Discrete mathematicsLogicConstructive set theoryFormal topologyHeyting-valued modelsConstructive set theoryHeyting algebraConsistency (knowledge bases)ConstructiveAlgebraMathematics::LogicPointfree topologyConstructive set theory Heyting algebras independence proofsMathematics::Category TheoryComputer Science::Logic in Computer ScienceIndependence (mathematical logic)Heyting algebraFrame (artificial intelligence)FrameSet theoryFormal topologyMathematics

description

AbstractWe define and investigate Heyting-valued interpretations for Constructive Zermelo–Frankel set theory (CZF). These interpretations provide models for CZF that are analogous to Boolean-valued models for ZF and to Heyting-valued models for IZF. Heyting-valued interpretations are defined here using set-generated frames and formal topologies. As applications of Heyting-valued interpretations, we present a relative consistency result and an independence proof.

10.1016/j.apal.2005.05.021http://dx.doi.org/10.1016/j.apal.2005.05.021