6533b7cffe1ef96bd1259aaa
RESEARCH PRODUCT
α-d-Glucopyranose Adsorption on a Pd30 Cluster Supported on Boron Nitride Nanotube
Dario DucaAntonio PrestianniRoberto SchimmentiFrancesco FerranteDimitri Yu. MurzinRemedios CorteseSophie Hermanssubject
Surface site reactivityChemical substanceNanotechnologyElectron donor02 engineering and technology010402 general chemistryDFT01 natural sciencesBoron nitride nanotubeCatalysisCatalysiCatalysisMetalchemistry.chemical_compoundAdsorptionSupported palladium catalystCluster (physics)Chemistry (all)Molecular electrostatic potentialGeneral Chemistry021001 nanoscience & nanotechnologyBoron nitride nanotube; DFT; Molecular electrostatic potential; Supported palladium catalyst; Surface site reactivity; α-d-Glucopyranose adsorption; Catalysis; Chemistry (all)0104 chemical scienceschemistryChemical physicsvisual_artα-d-Glucopyranose adsorptionvisual_art.visual_art_mediumDensity functional theory0210 nano-technologyScience technology and societydescription
Boron nitride nanotube (BNNT) as an innovative support for carbohydrate transformation processes was evaluated, using density functional theory. The α-d-glucopyranose adsorption on a Pd30 cluster, supported on BNNT, was used to check both the local activity of topologically different metallic sites and the effects of the proximity of the BNNT surface to the same metallic sites. Detailed geometrical and electronic analyses performed on Pd30/BNNT and α-d-glucopyranose/Pd30/BNNT systems were discussed. It was observed that the deposition of the Pd30 cluster onto the BNNT support gives rise to an electronic rearrangement, determining a charge transfer from the support to the adsorbed metal cluster. The charge transfer, as shown by the analysis of molecular electrostatic potential, seems to generate electron-rich and electron-poor zones in the Pd30 cluster. The α-d-glucopyranose species, regardless the interaction geometry experienced, acts as an electron donor and preferentially adsorbs close to the electron-poor metal/support interface.
year | journal | country | edition | language |
---|---|---|---|---|
2016-08-01 | Topics in Catalysis |