0000000000015249

AUTHOR

Antonio Prestianni

0000-0002-4631-7121

showing 52 related works from this author

α-d-Glucopyranose Adsorption on a Pd30 Cluster Supported on Boron Nitride Nanotube

2016

Boron nitride nanotube (BNNT) as an innovative support for carbohydrate transformation processes was evaluated, using density functional theory. The α-d-glucopyranose adsorption on a Pd30 cluster, supported on BNNT, was used to check both the local activity of topologically different metallic sites and the effects of the proximity of the BNNT surface to the same metallic sites. Detailed geometrical and electronic analyses performed on Pd30/BNNT and α-d-glucopyranose/Pd30/BNNT systems were discussed. It was observed that the deposition of the Pd30 cluster onto the BNNT support gives rise to an electronic rearrangement, determining a charge transfer from the support to the adsorbed metal clus…

Surface site reactivityChemical substanceNanotechnologyElectron donor02 engineering and technology010402 general chemistryDFT01 natural sciencesBoron nitride nanotubeCatalysisCatalysiCatalysisMetalchemistry.chemical_compoundAdsorptionSupported palladium catalystCluster (physics)Chemistry (all)Molecular electrostatic potentialGeneral Chemistry021001 nanoscience & nanotechnologyBoron nitride nanotube; DFT; Molecular electrostatic potential; Supported palladium catalyst; Surface site reactivity; α-d-Glucopyranose adsorption; Catalysis; Chemistry (all)0104 chemical scienceschemistryChemical physicsvisual_artα-d-Glucopyranose adsorptionvisual_art.visual_art_mediumDensity functional theory0210 nano-technologyScience technology and societyTopics in Catalysis
researchProduct

Structural evolution of Pt/ceria-zirconia TWC catalysts during the oxidation of carbon monoxide

2004

The structural evolution of two Pt/ceria–zirconia catalysts, characterized by different amounts of supported Pt, was monitored by in situ X-ray diffraction during the anaerobic oxidation of CO at different temperatures. In a first phase, oxygen coming from the surface layers of the ceria–zirconia mixed oxide is consumed and no structural variation of the support is observed. After this induction time, bulk reduction of Pt/ceria–zirconia takes place as a step-like process, while the CO2 production continues at a nearly constant rate. This behavior is totally different from that of the metal-free support in similar reaction conditions, that show a gradual bulk reduction. In repeated oxidation…

chemistry.chemical_classificationInorganic chemistrychemistry.chemical_elementCondensed Matter PhysicsChemical reactionElectronic Optical and Magnetic MaterialsCatalysisInorganic Chemistrychemistry.chemical_compoundchemistryTransition metalMaterials ChemistryCeramics and CompositesMixed oxideCubic zirconiaCompounds of carbonPhysical and Theoretical ChemistryPlatinumCarbon monoxide
researchProduct

Metal-support and preparation influence on the structural and electronic properties of gold catalysts

2006

Abstract Nanostructured gold catalysts supported on CeO2 and SiO2 were prepared by the deposition–precipitation (DP) and the solvated metal atom dispersion (SMAD) techniques. The structural and electronic properties of the catalysts were investigated by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS). Gold was found as small metal nanoparticles (cluster size ∼2 nm) in the SMAD-prepared samples and in ionic state in the DP catalysts. The catalytic activity of the samples was tested in the reaction of low temperature CO oxidation. Gold nanosized particles in a pure metallic state exhibited a worse catalytic performance, both on ceria and…

Au/SiO2Cerium oxideX-ray absorption spectroscopyAbsorption spectroscopyChemistryProcess Chemistry and TechnologyInorganic chemistryIonic bondingCO oxidationCatalysisXANESCatalysisParticle size effectMetalTransition metalX-ray photoelectron spectroscopyOxidation state of goldAu/CeO2visual_artvisual_art.visual_art_mediumXPS
researchProduct

Growth of sub-nanometric palladium clusters on boron nitride nanotubes: a DFT study.

2015

A QM/MM investigation is reported dealing with the nucleation and growth of small palladium clusters, up to Pd8, on the outer surface of a suitable model of boron nitride nanotubes (BNNTs). It is shown that BNNTs could have a template effect on the cluster growth, which is due to the interplay between Pd–N and Pd–Pd interactions as well as due to the matching of the B3N3 ring and the Pd(111) face arrangement. The values for the cluster adsorption energies reveal a relatively strong physisorption, which suggests that under particular conditions the BNNTs could be used as supports for the preparation of shape-controlled metal clusters.

Materials scienceNucleationGeneral Physics and Astronomychemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyRing (chemistry)01 natural sciences0104 chemical scienceschemistry.chemical_compoundAdsorptionPhysisorptionchemistryComputational chemistryChemical physicsBoron nitrideCluster (physics)Physical and Theoretical Chemistry0210 nano-technologyPalladiumMetal clustersPhysical chemistry chemical physics : PCCP
researchProduct

Computational study of metal-free N-doped carbon networks as hydrogenation catalysts

2015

The future development and assesment of an industry more environmental friendly will include the use of metal-free catalysts. Most of the reported metal-free catalysts are homogeneous and often their recycle is difficult; therefore, develop and investigate them is of interest both theoretical and experimental. Recently, N-doped nanotubes and graphene sheets, were synthesized [1,2], and it was demonstrated that the incorporation, within these carbon structures, of nitrogen atoms causes a greater electron mobility and introduces more active sites for catalytic reactions. This investigation is aimed at elucidating the main features of the hydrogen fragmentation over these carbon frameworks. Se…

Settore CHIM/03 - Chimica Generale E InorganicaDFT Carbon Hydrogenation Catalyst
researchProduct

Shape-Dependence of Pd Nanocrystal Carburization during Acetylene Hydrogenation

2015

This interdisciplinary work combines the use of shape- and size-defined Pd nanocrystals (cubes of 10 and 18 nm, and octahedra of 37 nm) with in situ techniques and DFT calculations to unravel the dynamic phenomena with respect to Pd reconstruction taking place during acetylene hydrogenation. Notably, it was found that the reacting Pd surface evolved at a different pace depending on the shape of the Pd nanocrystals, due to their specific propensity to form carbides under reaction conditions. Indeed, Pd cubes (Pd(100)) reacted with acetylene to form a PdC0.13 phase at a rate roughly 6-fold higher than that of octahedra (Pd(111)), resulting in nanocrystals with different degrees of carburizati…

Reaction conditionsMaterials scienceNanotechnologyPd Nanocrystal Acetylene Hydrogenation DFT structure sensitivitySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsAcetylene hydrogenationCarbidechemistry.chemical_compoundGeneral EnergyAcetylenechemistryNanocrystalOctahedronSettore CHIM/03 - Chimica Generale E InorganicaLattice (order)Physical chemistryPhysical and Theoretical Chemistry
researchProduct

DEBYE FUNCTION ANALYSIS OF SYNCHROTRON XRD DATA: STACKING FAULTS AND MICROSTRAINS IN SPHERICAL PALLADIUM CRYSTALLITES

2004

researchProduct

Nanostructured gold catalysts for low temperature CO oxidation

2005

researchProduct

DFT and kinetic evidences of the preferential CO oxidation pattern of manganese dioxide catalysts in hydrogen stream (PROX)

2022

Abstract The oxidation functionality of Mn(IV) sites has been assessed by density functional theory (DFT) analysis of adsorption and activation energies of CO, H2 and O2 on a model Mn4O8 cluster. DFT calculations indicate that Mn(IV) atoms prompt an easy CO conversion to CO2 via a reaction path involving both catalyst and gas-phase oxygen species, while much greater energy barriers hinder H2 oxidation. Accordingly, a MnCeOx catalyst (Mnat/Ceat, 5) with large exposure of Mn(IV) sites shows a remarkable CO oxidation performance at T ≥ 293 K and no H2 oxidation activity below 393 K. Empiric kinetics disclose that the catalyst-oxygen abstraction step determines both CO and H2 oxidation rate, al…

HydrogenProcess Chemistry and TechnologyInorganic chemistryKineticsPROX2chemistry.chemical_elementPreferential CO oxidationManganeseReaction mechanism and kineticsOxygenCatalysisCatalysisand CO oxidationHDFT analysisAdsorptionchemistryDensity functional theoryDFT analysis; H; 2; and CO oxidation; Manganese dioxide catalyst; Preferential CO oxidation; Reaction mechanism and kineticsH2 and CO oxidationGeneral Environmental ScienceManganese dioxide catalyst
researchProduct

DFT insights into the oxygen-assisted selective oxidation of benzyl alcohol on manganese dioxide catalysts

2020

Abstract The reactivity pattern of the MnO2 catalyst in the selective aerobic oxidation of benzyl alcohol is assessed by density functional theory (DFT) analysis of adsorption energies and activation barriers on a model Mn4O8 cluster. DFT calculations predict high reactivity of defective Mn(IV) sites ruling a surface redox mechanism, L-H type, involving gas-phase oxygen. Bare and promoted (i.e., CeOx and FeOx) MnOx materials with high surface exposure of Mn(IV) sites were synthesized to assess kinetic and mechanistic issues of the selective aerobic oxidation of benzyl alcohol on real catalysts (T, 333–363 K). According to DFT predictions, the experimental study shows: i) comparable activity…

inorganic chemicalsInorganic chemistrychemistry.chemical_elementAlcoholManganese010402 general chemistry01 natural sciencesRedoxCatalysisInorganic Chemistrychemistry.chemical_compoundAdsorptionBenzyl alcoholMaterials ChemistryReactivity (chemistry)Physical and Theoretical ChemistryReaction mechanismBenzoic acidDFT analysi010405 organic chemistryActive siteorganic chemicalsMnO2 catalyst0104 chemical scienceschemistrySettore CHIM/03 - Chimica Generale E InorganicaBenzyl alcoholActive sites; Benzyl alcohol; DFT analysis; MnO; 2; catalyst; Reaction mechanism; Selective oxidationSelective oxidation
researchProduct

Density Functional Theory Investigation on the Nucleation of Homo- and Heteronuclear Metal Clusters on Defective Graphene

2016

Nucleation of homo- (Ni, Pd, Re, Pt) and heterometallic (Ni–Pd, Re–Pt) clusters on monovacancy sites of a graphene sheet has been investigated by means of periodic density functional theory calculations. It is shown that a vacant site in graphene is an effective nucleation center for both the monometallic and bimetallic clusters, whose characteristics are described in terms of structural distortions, nucleation energetics, affinities between different metal atoms, metal–carbon interactions, and ease of diffusion of metal atoms on graphene.

DiffusionNucleationSurfaces Coatings and Film02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionMetalComputational chemistrylawPhysical and Theoretical ChemistryBimetallic stripChemistryGrapheneElectronic Optical and Magnetic Material021001 nanoscience & nanotechnologyAffinities0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsGeneral EnergyEnergy (all)Heteronuclear moleculeChemical physicsvisual_artvisual_art.visual_art_mediumDensity functional theory0210 nano-technology
researchProduct

Molecular-Level Characterization of Heterogeneous Catalytic Systems by Algorithmic Time Dependent Monte Carlo

2009

Monte Carlo algorithms and codes, used to study heterogeneous catalytic systems in the frame of the computational section of the NANOCAT project, are presented along with some exemplifying applications and results. In particular, time dependent Monte Carlo methods supported by high level quantum chemical information employed in the field of heterogeneous catalysis are focused. Technical details of the present algorithmic Monte Carlo development as well as possible evolution aimed at a deeper interrelationship of quantum and stochastic methods are discussed, pointing to two different aspects: the thermal-effect involvement and the three-dimensional catalytic matrix simulation. As topical app…

Hybrid Monte CarloTDMC catalytic propertiesChemistryMonte Carlo methodDynamic Monte Carlo methodMonte Carlo method in statistical physicsGeneral ChemistryStatistical physicsParallel temperingKinetic Monte CarloHeterogeneous catalysisCatalysisMonte Carlo molecular modelingTopics in Catalysis
researchProduct

The complete basis set Full-CI roto-vibrational spectroscopic constants of AlH, AlH+ and AlH -

2017

The spectroscopic constants of AlH, AlH + and AlH -, as well as their counterparts with H/D isotopic substitution, were obtained at the frozen core Full-CI/CBS limit and corrected for the core-correlation, relativistic and diagonal Born–Oppenheimer contributions, calculated by means of different high-level computational methods. On the basis of the obtained values, some accepted experimental result for these astrochemically relevant species is questioned.

Physical and Theoretical ChemistryAluminum hydrideAstrochemistryRoto-vibrational spectroscopy
researchProduct

IR fingerprints of U(VI) nitrate monoamides complexes: a joint experimental and theoretical study.

2010

Infrared spectra of 0.5 mol·L-1 uranium(VI) nitrate monoamide complexes in toluene have been recorded and compared with infrared spectra calculated by DFT. The investigated monoamides were N,N- dimethylformamide (DMF), N,N-dibutylformamide (DBF), and N,N- dicyclohexylformamide (DcHF). The validity of DFT calculations for describing uranium nitrate monoamide complexes has been confirmed as a fair agreement between experimental and calculated spectra was obtained. Furthermore, a topological analysis of the electron density has been carried out to characterize monoamide-uranium interactions. From this work, it appears that the increase of stability of uranylmonoamide complexes may be directly …

Theoretical studyElectron densityTopological analysis Engineering controlled terms: DimethylformamideInorganic chemistryDFT calculationStrontium compoundchemistry.chemical_elementInfrared spectroscopyLigand010402 general chemistryTopology01 natural sciencesElectrostatic interactionSpectral linechemistry.chemical_compoundDelocalized electronNitratePositive charge[CHIM]Chemical SciencesPhysical and Theoretical ChemistryElectron densitieInfrared spectrumSpectroscopyComputingMilieux_MISCELLANEOUSLigand molecule010405 organic chemistrySulfur compoundUraniumTolueneN N-Dimethylformamide0104 chemical sciencesStable complexe[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrychemistryOrganic solventUraniumPhysical chemistryDegree of polarizationDegree of polarizationMonoamideUranium compounds Engineering main heading: ComplexationTolueneThe journal of physical chemistry. A
researchProduct

Density Functional Theory Investigation on the Nucleation and Growth of Small Palladium Clusters on a Hyper-Cross-Linked Polystyrene Matrix

2014

Density functional theory calculations were employed to investigate the nucleation and growth of small palladium clusters, up to Pd9, into a microcavity of the porous hyper-cross-linked polystyrene (HPS). The geometries and the electronic structures of the palladium clusters inside the HPS cavity, following the one-by-one atom addition, are affected by a counterbalance between the Pd–phenyl (Pd−Φ) and Pd–Pd interactions. The analysis performed on energetics, cavity distortions, and cluster geometries indeed suggest that the cluster growth is dominated by the Pd−Φ interactions up to the formation of Pd4 aggregates, whereas the metal–metal interactions actually rule the growth of the larger c…

catalysispolymeric supportNucleationchemistry.chemical_elementSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsMatrix (mathematics)chemistry.chemical_compoundGeneral EnergychemistryChemical physicsComputational chemistryAtomCluster (physics)Density functional theoryPolystyrenePhysical and Theoretical ChemistryElasticity (economics)Metal nanoparticlemetal-phenyl interactionPalladiumThe Journal of Physical Chemistry C
researchProduct

Acridine orange in a pumpkin-shaped macrocycle: Beyond solvent effects in the UV–visible spectra simulation of dyes

2010

Abstract We present simulation of the UV–visible spectra of acridine orange, a widely used photosensitizer for in vivo studies due to its highly environment-dependent spectroscopic properties. This dye has been investigated both in its protonated and neutral forms, either isolated or embedded in a pumpkin-shaped macromolecular cycle (cucurbit-7-uril), using time-dependent density functional theory techniques. To model this macromolecular cycle, two strategies are taken into account, allowing decoupling of the geometric and electrostatic influences of the host on the guest molecules. Experimental data are well-reproduced when using an embedding electrostatic technique, suggesting that such a…

Dye010405 organic chemistryAcridine orangeProtonationTime-dependent density functional theory010402 general chemistryCondensed Matter PhysicsPhotochemistry01 natural sciencesBiochemistry0104 chemical scienceschemistry.chemical_compoundchemistryDensity functional theoryTime-dependent density functional theoryMolecule[CHIM]Chemical SciencesPhotosensitizerDensity functional theoryPhysical and Theoretical ChemistrySolvent effectsComputingMilieux_MISCELLANEOUSMacromolecule
researchProduct

A density functional theory study of uranium(VI) nitrate monoamide complexes.

2011

Density functional theory calculations were performed on uranyl complexed with nitrate and monoamide ligands (L) [UO(2)(NO(3))(2)·2L]. The obtained results show that the complex stability is mainly governed by two factors: (i) the maximization of the polarizability of the coordinating ligand and (ii) the minimization of the steric hindrance effects. Furthermore, the electrostatic interaction between ligands and uranium(vi) was found to be a crucial parameter for the complex stability. These results pave the way to the definition of (quantitative) property/structure relationships for the in silico screening of monoamide ligands with improved extraction efficiency of uranium(vi) in nitrate ac…

Steric effectsLigandExtraction (chemistry)Inorganic chemistryGeneral Physics and Astronomychemistry.chemical_elementUraniumUranylUranium complexes DFT nitrate acidic solutionchemistry.chemical_compoundchemistryNitrateComputational chemistryPolarizabilitySettore CHIM/03 - Chimica Generale E InorganicaDensity functional theoryPhysical and Theoretical ChemistryPhysical chemistry chemical physics : PCCP
researchProduct

HPS-based catalysts: a computational study

2012

POLYCAT hypercrosslinked polystyrene catalysis
researchProduct

Investigation of Polyol Adsorption on Ru, Pd, and Re Using vdW Density Functionals

2015

Biomass-based feedstocks are often oxygenated compounds characterized by large amounts of hydroxyls. As an example, polyols and sugar alcohols are largely employed as reactants for different chemical catalytic transformations such as oxidation, dehydration, and hydrodeoxigenation, which usually occur in aqueous medium. With the goal of gaining new insights into processes that could be industrially relevant, the adsorption of the OH groups on metal surfaces and in the presence of water has to be correctly reproduced and described, within a chosen theoretical framework. Toward this goal, several tests were performed on the catalytically relevant metal Ru, Pd, and Re, benchmarking their bulk a…

chemistry.chemical_classificationElectronic Optical and Magnetic MaterialInorganic chemistrySurfaces Coatings and FilmErythritolSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCatalysisMetalchemistry.chemical_compoundGeneral EnergyAdsorptionEnergy (all)chemistryPolyolComputational chemistryvisual_artvisual_art.visual_art_mediumGlycerolMethanolPhysical and Theoretical ChemistryEthylene glycol
researchProduct

NAOs and vdW‐DF for simulating co‐adsorption of water and polyols on metal surfaces

2015

The computational approach employed in this study is based on the combined use of numerical atomic orbitals (NAOs), which are recognized as highly efficient basis sets, and different parameterization of vdW-DF exchange-correlation functionals, namely DRSLL and KBM as implemented in the SIESTA code.

Settore CHIM/03 - Chimica Generale E InorganicaPolyols metal surface DFT
researchProduct

XPS study of supported gold catalysts:the role of Au0 and Au+? species as active sites.

2006

Gold nanoparticles supported on different oxides (SiO2, CeO2 and TiO2) were prepared by the SMAD (solvated metal atom dispersion) and deposition–precipitation (DP) techniques. The physical and chemical characterization of the catalysts was performed by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and the catalytic activity was tested during the reaction of low temperature CO oxidation. The structural and surface analyses evidenced the presence of small gold crystallites (cluster size ∼2–5 nm) in all the SMAD-prepared samples and oxidized gold species in the case of the DP catalysts. A different surface distribution of ionic gold species was found on the different suppo…

Cerium oxideChemistryInorganic chemistryIonic bondingSurfaces and InterfacesGeneral ChemistryAtmospheric temperature rangeCondensed Matter PhysicsSurfaces Coatings and FilmsCatalysisMetalTransition metalX-ray photoelectron spectroscopyColloidal goldvisual_artMaterials Chemistryvisual_art.visual_art_medium
researchProduct

CO Oxidation on Cationic Gold Clusters: A Theoretical Study

2008

Aiming at understanding the elementary steps governing the oxidation of CO catalyzed by dispersed or supported gold nanoclusters, the reactivity of molecular species, such as O2 and CO, on neutral and positively charged Au13 clusters have been studied using a DFT approach. Two CO oxidation mechanisms have been simulated, involving respectively the adsorption of CO and O2 on adjacent catalytic sites (two-sites mechanism) and the competitive interaction of the reactants on the same site (single-site mechanism). It is demonstrated that in the former scheme a definite interaction of CO and O2 with both the charged and neutral cluster is effective, but that a chemical reaction between the adsorb…

Latter mechanismInorganic chemistryReaction pathPhotochemistryChemical reactionNeutral clusterNanoclustersCatalysisMolecular specieAdsorptionCompetitive interactionCluster (physics)Reactivity (chemistry)Physical and Theoretical ChemistrySupported golds Engineering main heading: Carbon monoxideEngineering controlled terms: AdsorptionPositively chargedOxidation Engineering uncontrolled terms: Catalytic siteDioxygenChemistryElementary stepCationic polymerizationOxidation of COCatalytic oxidationCO oxidationSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsFlow interactionGeneral EnergyCarbon dioxideCatalytic oxidationChemical oxygen demandCarbon clusterCationic gold clusterChemical reactionGold compoundThe Journal of Physical Chemistry C
researchProduct

Growth of Palladium Clusters on a Boron Nitride Nanotube Support

2015

We demonstrated that the migration process of a single palladium atom on the BNNT is not highly energy demanding and can be represented as a hopping mechanism between boron and nitrogen. A model was finally found for the interpretation of the growth energetics, showing that the process is generally favoured increasing the cluster size.

Palladium Boron Nitride Supported Catalyst DFT
researchProduct

Hydrogenolysis of hydroxymatairesinol on Y derived catalysts: a computational study

2010

Hydrogenolysis of 7-hydroxymatairesinol (HMR) to matairesinol (MAT) occurs on palladium supported acidic catalysts. HMR has three stereochemical centres and naturally exists as a mixture of two diastereoisomers, namely RRR-HMR and SRR-HMR. The latter is significantly more reactive than the former, in the reaction above. In order to elucidate the hydrogenolysis mechanism, simple surface events involving HMR derivatives on aluminated faujasite (H-Y) fragments were simulated by quantum chemical calculations. The metallic function of a Pd/H-Y acidic catalyst was also mimicked by a minimal palladium cluster. Stereochemical evidences pointed already out that water β-elimination on the epimeric ce…

7-HydroxymatairesinolProcess Chemistry and TechnologySupported catalystschemistry.chemical_elementDFT calculationFaujasiteengineering.materialHeterogeneous catalysisMedicinal chemistryHydrogenation/dehydration processeCatalysisCatalysisReaction rateHydroxymatairesinolchemistryHydrogenolysisengineeringOrganic chemistryReactivity (chemistry)Physical and Theoretical ChemistryPalladiumH-Y zeolite
researchProduct

Benzyl alcohol to benzaldehyde oxidation on MnOx clusters: Unraveling atomistic features

2021

Abstract The catalytic oxidation of benzyl alcohol with O 2 is a promising option for the production of benzaldehyde, from both environmental and economical viewpoints. In particular, highly dispersed MnO x systems feature good activity and selectivity in a wide range of temperatures, although deactivation phenomena by over-oxidation and/or poisoning of active sites are generally recorded. On this account, a density functional theory study was performed on cluster-sized catalyst models, namely Mn 4 O 8 and over-oxygenated Mn 4 O 9 fragments, to predict the reactivity pattern of MnO x catalysts in the selective aerobic oxidation of benzyl alcohol. Several pathways concur to determine the who…

Reaction mechanismCatalyst deactivationReaction mechanismsProcess Chemistry and TechnologyMnOx based catalystsPhotochemistryDFTCatalysisCatalysisBenzaldehydechemistry.chemical_compoundchemistryCatalytic oxidationBenzyl alcoholAlcohol oxidationCatalyst deactivation; DFT; MnO; x; based catalysts; Oxidative dehydrogenation; Reaction mechanismsReactivity (chemistry)Physical and Theoretical ChemistryOxidative dehydrogenationSettore CHIM/02 - Chimica FisicaBenzoic acidMolecular Catalysis
researchProduct

Propan-2-ol dehydration on acidic zeolite fragments: a DFT study

2008

propan-2-ol dehydration DFTZSM5
researchProduct

Graph-based analysis of ethylene glycol decomposition on a palladium cluster

2017

The ethylene glycol, CH2OH-CH2OH, decomposition mechanism, occurring on a subnanometric palladium cluster shaped by 12 atoms, was investigated by means of density functional theory. Different reaction routes were identified leading to H2 and CO. The whole reaction network was analyzed, framing the results within the graph theory. The possible decomposition pathways were discussed and compared, allowing one to draw a whole picture of all the parallel, possibly competitive, routes that starting from CH2OH-CH2OH originate H2 and CO.

Electronic Optical and Magnetic MaterialGraph basedSurfaces Coatings and Filmchemistry.chemical_elementGraph theory02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundEnergy (all)General EnergychemistryComputational chemistryOrganic chemistryDensity functional theoryPhysical and Theoretical Chemistry0210 nano-technologyEthylene glycolPalladium
researchProduct

DFT calculations on subnanometric metal catalysts: a short review on new supported materials

2018

Metal clusters have been used in catalysis for a long time, even in industrial production protocols, and a large number of theoretical and experimental studies aimed at characterizing their structure and reactivity, either when supported or not, are already present in the literature. Nevertheless, in the last years the advances made in the control of the synthesis and stabilization of subnanometric clusters promoted a renewed interest in the field. The shape and size of sub-nanometer clusters are crucial in determining their catalytic activity and selectivity. Moreover, if supported, subnanometric clusters could be highly influenced by the interactions with the support that could affect geo…

Materials scienceDFT calculationSubnanometric metal clusterNanotechnology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyHeterogeneous catalysis01 natural sciences0104 chemical sciencesCatalysisHeterogeneous catalysiReactivity (chemistry)Metal catalystPhysical and Theoretical Chemistry0210 nano-technologyMetal nanoparticlesMetal clustersElectronic properties
researchProduct

Computational Investigation of Palladium Supported Boron Nitride Nanotube Catalysts

2015

A QM/MM investigation is reported dealing with the nucleation and growth of small palladium clusters, up to Pd8 , on the outer surface of a suitable model of boron nitride nanotube (BNNT). It is shown that the BNNT could have a template effect on the cluster growth, which is due to the interplay between Pd-N and Pd-Pd interactions as well as to the matching of the B3N3 ring and the Pd(111) face arrangement. The values for the clusters adsorption energies reveal a relatively strong physisorption, which suggests that in particular conditions the BNNTs could be used as supports for the preparation of shape-controlled metal cluster

Settore CHIM/03 - Chimica Generale E InorganicaDFT PALLADIUM BORON NITRIDE SUPPORTED CATALYST
researchProduct

Computational Investigation of Alkynols and Alkyndiols Hydrogenation on a Palladium Cluster

2013

The reaction path leading to the partial and total reduction of alkynols and alkyndiols with general formula R–CH2–C≡C–CH(OH)–R′ and R–CH(OH)–C≡C–CH(OH)–R′ (R, R′ = H, CH3) on a D3h symmetry Pd9 cl...

Palladium cluster hydrogenation reactions unsaturated alcoholschemistry.chemical_elementPhotochemistrySymmetry (physics)3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsReduction (complexity)General EnergychemistryCluster (physics)Physical chemistryReaction pathPhysical and Theoretical ChemistryPalladiumThe Journal of Physical Chemistry C
researchProduct

Propan-2-ol dehydration on H-ZSM-5 and H-Y zeolite: a DFT study

2012

The catalytic dehydration of propan-2-ol over H-Y and H-ZMS-5 aluminated zeolite models, mimicking both internal cavities and external surfaces, was studied by DFT calculations to investigate the reaction mechanism. After the adsorption of propan-2-ol on the zeolite, the dehydration mechanism starts with alcohol protonation, occurring by one acidic –OH group of the zeolite fragment, followed by a concerted β-elimination to give propene. The catalytic activity is affected by the size of the zeolite cavity, which is larger in the H-Y than in the H-ZMS-5 zeolite. The adsorption energy of the reagent, as an example, decreases in the order: H-Y cavity ≃ H-ZMS-5 surface > H-ZMS-5 cavity, pointing…

Reaction mechanismChemistryDFT and MP2 calculationsPhotochemistryCatalysisReaction modelingCatalysisGibbs free energyPropenePropan-2-ol dehydrationsymbols.namesakechemistry.chemical_compoundAdsorptionSettore CHIM/03 - Chimica Generale E InorganicaReagentsymbolsPhysical and Theoretical ChemistryZSM-5ZeoliteConfinement effect
researchProduct

Hydrogenation of but-2-yne-1,4-diol on a palladium cluster: a computational study

2013

catalysisDFT calculationpalladium cluster
researchProduct

Alkane dehydrogenation on defective BN quasi-molecular nanoflakes: DFT studies

2020

Lower alkanes are feedstocks readily available but relatively inert. The con- version of low cost alkanes to industrially relevant alkenes is usually carried out on metal-based heterogeneous catalysts. Considering both the cost and the potential harmfulness of the metal involved in the dehydrogenation cat- alysts (typically, platinum or chromium), the study of metal-free processes represents an important challenge for the industrial chemistry in order to address more sustainable protocols and different routes either to activate or transform alkanes. Framed in this context, it was investigated, using a den- sity functional theory approach, the potential dehydrogenation activity of de- fectiv…

chemistry.chemical_classificationAlkaneMaterials science010405 organic chemistryProcess Chemistry and Technologychemistry.chemical_elementContext (language use)010402 general chemistry01 natural sciencesCatalysis0104 chemical sciencesCatalysischemistry.chemical_compoundHydrocarbonchemistryChemical engineeringBoron nitrideSettore CHIM/03 - Chimica Generale E InorganicaDehydrogenationPhysical and Theoretical ChemistryPlatinumBoronMetal-free processes Low cost alkanes conversion Quasi-molecular BN nanoflakes DFT modeling
researchProduct

Selective hydrogenation of 2-methyl-butyn-2-ol on Pd catalysts

2013

Structure sensitive Theoretical DFT
researchProduct

H2 hitting on graphene supported palladium cluster: molecular dynamics simulations

2016

Dissociative adsorption of impinging gas-phase molecular hydrogen (H2) on a palladium cluster (Pd4) supported on defective graphene (C47) was studied by periodic density functional theory molecular dynamics simulations. The H2 on Pd4/C47 collision dynamics were investigated without any particular constraint, except for the Born–Oppenheimer approximation. The study, which had mostly method-testing aims, provided, anyway, valuable information about the collision kinetics of gas-phase molecular hydrogen. This was treated as an impacting projectile having different kinetic energy values. At lower kinetic energies, sticking was ruled by steering effects imputable to the Pd cluster that easily re…

Hydrogenchemistry.chemical_elementNanotechnology02 engineering and technology010402 general chemistryKinetic energy01 natural scienceslaw.inventionMolecular dynamicsAdsorptionlawSteering effectCluster (physics)MoleculePhysics::Chemical PhysicsPhysical and Theoretical ChemistryPhysicsGrapheneHydrogen fragmentationDFT–MD simulation021001 nanoscience & nanotechnology0104 chemical scienceschemistryChemical physics0210 nano-technologySupported palladium clusterPalladiumTheoretical Chemistry Accounts
researchProduct

THEORETICAL INSIGHTS ON O2 AND CO ADSORPTION ON NEUTRAL AND POSITIVELY CHARGED GOLD CLUSTERS

2006

With the aim of understanding the elementary steps governing the oxidation of CO catalyzed by dispersed or supported gold nanoclusters, the adsorption of molecular species, such as O2 and CO, on model neutral and positively charged clusters (Au(n)(m+) n = 1, 9, and 13; m = 0, 1, and 3) has been studied using an ab initio approach. The computed structural and thermodynamic data related to the binding process show that molecular oxygen interacts better with neutral clusters, acting as an electron acceptor, while CO more strongly binds to positively charged species, thus acting as an electron donor.

chemistry.chemical_classificationChemistrynanostructured materialAb initiotransitionElectron donorElectronElectron acceptorElectronSurfaces Coatings and FilmsNanoclustersCatalysischemistry.chemical_compoundCrystallographyAdsorptionComputational chemistryOxidationMaterials ChemistryThermodynamicsMolecular oxygenAdsorptionGoldPhysical and Theoretical Chemistry
researchProduct

Structural and Kinetic DFT Characterization of Materials to Rationalize Catalytic Performance

2009

This review shortly discusses recent results obtained by the application of density functional theory for the calculations of the adsorption and diffusion properties of small molecules and their reactivity on heterogenous catalytic systems, in the ambit of the Nanocat project. Particular focus has been devoted to palladium catalysts, either in atomic or small cluster form. Some protocols have been tested to obtain efficient ways able to treat the electronic and geometric influence of supports like zeolites and carbon nanotubes on the catalytic properties of palladium. The hydroisomerization of cis-but-2-ene is discussed as model reaction on supported and unsupported Pd clusters. Some prelim…

Materials sciencechemistry.chemical_elementGeneral ChemistryCarbon nanotubeCatalysisCatalysisCharacterization (materials science)law.inventionAdsorptionchemistryChemical engineeringlawCluster (physics)Organic chemistryReactivity (chemistry)Density functional theoryDFT catalysis computational chemistryPalladiumTopics in Catalysis
researchProduct

Structural, energetic and kinetic database of catalytic reactions: Benzyl alcohol to benzaldehyde oxidation on MnOx clusters

2021

Abstract Data here reported are connected with the research article “Benzyl Alcohol to Benzaldehyde Oxidation on MnO x Clusters: Unraveling Atomistic Features” Gueci et al. [1] . This work described and discussed structural and energetic results, calculated by Density Functional Theory (DFT). In order to get kinetic information, DFT results were refined by an original approach, which will be shortly described in the following article. The crossed analysis of experimental and computational energetic and kinetic data allowed to (i) reconstruct the complicated lattice that connects the primary and secondary mechanisms of the reaction and (ii) identify alternative process pathways capable of by…

Work (thermodynamics)Science (General)MultidisciplinaryMaterials scienceMnOx Oxidative–dehydrogenation Deactivation Remediation DFT Reaction kineticMnOxComputer applications to medicine. Medical informaticsKineticsDeactivationReaction kineticR858-859.7RemediationAlternative processHeterogeneous catalysisDFTCatalysisBenzaldehydeQ1-390chemistry.chemical_compoundchemistryBenzyl alcoholComputational chemistryDensity functional theoryOxidative–dehydrogenationSettore CHIM/02 - Chimica FisicaData in Brief
researchProduct

H2 Transformations on Graphene Supported Palladium Cluster: DFT-MD Simulations and NEB Calculations

2020

Molecular dynamics simulations based on density functional theory were employed to investigate the fate of a hydrogen molecule shot with different kinetic energy toward a hydrogenated palladium cluster anchored on the vacant site of a defective graphene sheet. Hits resulting in H2 adsorption occur until the cluster is fully saturated. The influence of H content over Pd with respect to atomic hydrogen spillover onto graphene was investigated. Calculated energy barriers of ca. 1.6 eV for H-spillover suggest that the investigated Pd/graphene system is a good candidate for hydrogen storage.

Materials sciencespilloverhydrogen reactionchemistry.chemical_elementsupported metal catalysts02 engineering and technology010402 general chemistryKinetic energylcsh:Chemical technology01 natural sciencesDFTCatalysislaw.inventionlcsh:ChemistryMolecular dynamicsHydrogen storagelawCluster (physics)lcsh:TP1-1185Physical and Theoretical Chemistryhydrogenation elementary eventsGraphene021001 nanoscience & nanotechnology0104 chemical scienceschemistrylcsh:QD1-999Chemical physicsDensity functional theoryHydrogen spillover0210 nano-technologyPalladiumCatalysts
researchProduct

Metal-support interaction and redox behavior of Pt(1 wt %)/Ce0.6Zr0.4O2

2006

The catalyst Pt(1 wt %)/Ce(0.6)Zr(0.4)O(2) is studied by CO-temperature programmed reduction (CO-TPR), isothermal oxygen storage complete capacity (OSCC), X-ray absorption spectroscopy (XAS) at the Pt L(III) edge, and in situ X-ray diffraction (in situ XRD), with the aim of elucidating the role of supported metal in CO oxidation by ceria-based three-way catalysts (TWC). The redox behavior of Pt(1 wt %)/Ce(0.6)Zr(0.4)O(2) is compared to that of bare ceria-zirconia. OSCC of redox-aged Pt/ceria-zirconia is twice that of bare ceria-zirconia, and the maximum of CO consumption occurs at a temperature about 300 K lower than redox-aged ceria-zirconia. XAS analysis allows one to evidence the formati…

X-ray absorption spectroscopyMaterials scienceAbsorption spectroscopyOxygen storageAlloyXRD XAFS Pd catalystAnalytical chemistrySinteringengineering.materialRedoxSurfaces Coatings and FilmsCatalysisMetalCrystallographySettore CHIM/03 - Chimica Generale E Inorganicavisual_artMaterials Chemistryvisual_art.visual_art_mediumengineeringPhysical and Theoretical Chemistry
researchProduct

DFT investigation of polyalcohols reforming on palladium cluster

2015

Biomass conversion technologies have recently gained high industrial interest for the production of sustainable fuels and fine chemicals; starting feedstocks for these processes are generally complex mixtures of oxygenated compounds, ranging from lignans, carbohydrates and polyalcohols to carboxylic acids [1]. Framed within this scientific context the entire reforming mechanism of two well-known polyols, namely ethylen glycol (C2) and glycerol (C3), on a small Pd cluster was investigated by means of density functional theory. Among the large amount of reaction pathways that can be followed in the reforming of oxygenates, we discuss here only the route that brings to carbon monoxide and hydr…

Settore CHIM/03 - Chimica Generale E InorganicaDFT Palladium polyalcohols reforming
researchProduct

Oxygen-assisted hydroxymatairesinol dehydrogenation: a selective secondary-alcohol oxidation over a gold catalyst.

2013

Selective dehydrogenation of the biomass-derived lignan hydroxymatairesinol (HMR) to oxomatairesinol (oxoMAT) was studied over an Au/Al(2)O(3) catalyst. The reaction was carried out in a semi-batch glass reactor at 343 K under two different gas atmospheres, namely produced through synthetic air or nitrogen. The studied reaction is, in fact, an example of secondary-alcohol oxidation over an Au catalyst. Thus, the investigated reaction mechanism of HMR oxidative dehydrogenation is useful for the fundamental understanding of other secondary-alcohol dehydrogenation over Au surfaces. To investigate the elementary catalytic steps ruling both oxygen-free- and oxygen-assisted dehydrogenation of HMR…

Reaction mechanismMolecular Structure010405 organic chemistryChemistryOrganic ChemistryDiastereomerGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesCatalysisLignans0104 chemical sciencesCatalysisOxygenAdsorptionHydroxymatairesinolAlcohol oxidationAlcoholsdehydrogenation density functional calculations gold catalysisReactivity (chemistry)DehydrogenationAdsorptionGoldOxidation-ReductionChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

A DFT investigation of CO oxidation over neutral and cationic gold clusters

2009

Abstract The interaction of CO and O 2 with neutral and positively charged Au 9 and Au 13 clusters was studied using Density Functional Theory. The aim was the understanding of the elementary steps of the low temperature activity of supported gold nanoparticles towards carbon monoxide combustion, that is, the oxidation of CO to CO 2 in presence of dioxygen molecules. The adsorption of a single CO molecule gives rise to a substantial electronic rearrangement on both neutral and cationic gold clusters. On the contrary, the adsorption of dioxygen produces an electron transfer from neutral gold clusters to the O 2 , while the interaction with cationic Au nanoparticles is simply electrostatic. C…

Gold clusterCationic polymerizationCondensed Matter PhysicsPhotochemistryBiochemistryChemical reactionCO oxidationDFTCatalysischemistry.chemical_compoundElectron transferAdsorptionchemistryMoleculePhysical and Theoretical ChemistryGold clusterCarbon monoxide
researchProduct

Structure Sensitivity of 2-Methyl-3-butyn-2-ol Hydrogenation on Pd: Computational and Experimental Modeling

2014

In the frame of DFT paradigms, the adsorption of 2-methyl-3-butyn-2-ol (MBY) and 2-methyl-3-buten-2-ol (MBE) on a Pd-30 cluster, including both {100} and {111} faces, was studied along with the pathways involved in the hydrogenation, taking place on plane and low coordination (corner/edge) sites of given MBY/Pd-30 and MBE/Pd-30 surface configurations. The calculated energetics, further validated by gas-phase and water-assisted gas-phase MBY and MBE hydrogenation, performed on well-defined size and shape-controlled Pd nanoparticles supported on SiO2, were able to explain the origin of the structure sensitivity and the high selectivity characterizing the title reaction when occurring in aqueo…

Aqueous solutionChemistryHigh selectivitySurfaces Coatings and FilmsElectronic Optical and Magnetic Materials2-methyl-3-butyn-2-olCrystallographyGeneral EnergyAdsorptionComputational chemistryPd nanoparticlesCluster (physics)MoietySensitivity (control systems)Physical and Theoretical ChemistryThe Journal of Physical Chemistry C
researchProduct

COMPUTATIONAL APPROACHES EMPLOYED IN THE SusFuelCat PROJECT

2013

heterogeneous catalysis DFT
researchProduct

Theoretical Investigation of Aqueous Phase Reforming of 1,2 Propanediol over a Pt catalyst

2015

Aqueous Phase Reforming (APR) process is one of the most efficient solution for producing hydrogen from biomass renewable feedstocks, such as polyalcohols. [1] Generally the reaction is catalyzed by supported platinoid metals and among these platinum has been recognized as the most active and selective toward the production of hydrogen. However, due to its really high complexity, the reaction mechanism is today poorly understood. DFT methods can be useful for understanding the APR catalytic mechanism at atomistic level. A detailed mechanistic study was carried out using a Pt30 cluster for the modelization of the catalyst and 1,2 propanediol (1,2PDO) as a model feedstock for the APR. Even fo…

Settore CHIM/03 - Chimica Generale E InorganicaAqueous Phase Reforming DFT Pt Catalyst
researchProduct

Palladium clusters on BNNT as catalysts for biomass conversion

2015

The construction of a heterogeneous catalytic systems by a bottom-up approach is a fascinating strategy well assisted by molecular level characterizations. In this sense, DFT investigations can be used with predictive and descriptive purposes both for the treatment of the catalyst/support and for the substrate/catalyst characterization. This should be particularly useful for highly perspective but scarcely treated systems such as boron nitride based supports. Among these, boron nitride nanotubes (BNNT) have been demonstrated to have high chemical and thermal stability as well as great mechanical strength and high thermal conductivity.[1] Moreover, a high affinity toward hydrogen [2] as well…

Settore CHIM/03 - Chimica Generale E InorganicaBoron Nitride Nanotube DFT Biomass Conversion
researchProduct

Factors Controlling the Energy of Nitrogen Monolayer Coverage onHigh Surface Area Catalyst Oxide Carriers

2011

Factors affecting the strength of nitrogen physisorption at monolayer coverage on different catalytic oxide carriers (e.g., ZnO, MgO, Al2O3, ZrO2, TiO2, and SiO2) have been addressed. Isotherm elaboration by the two-parameter BET equation provides C-constant values (80–200) inversely related to the polarizing power (PP) of the oxide adsorbent irrespective of the surface area exposure. The energy of monolayer formation depends on the extent of charge-delocalization characterizing the surface cation-oxygen bond, which determines the acid–base character of the oxide and strength of van der Waals interactions with adsorbate molecules. Density functional theory (DFT) calculations on MgO and TiO2…

Materials scienceInorganic chemistryOxideSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCatalysisBET isothermchemistry.chemical_compoundsymbols.namesakenitrogen adsorption DFTGeneral EnergyAdsorptionchemistryPhysisorptionChemical engineeringMonolayersymbolsMoleculeDensity functional theoryPhysical and Theoretical Chemistryvan der Waals force
researchProduct

Structure Sensitivity of 2‐Methyl--butyn-2-ol Hydrogenation on Pd: Computational and Experimental Modeling

2014

Palladium catalists structure sensitivity DFT calculations
researchProduct

A Combined Theoretical and Experimental Approach for Platinum Catalyzed 1,2-Propanediol Aqueous Phase Reforming

2017

Decomposition pathways of 1,2-propanediol (1,2-PDO) on platinum were investigated by means of experiments and quantum-mechanical calculations. Different reaction paths on a Pt(111) model surface were computationally screened. Gas and liquid phase products distribution for aqueous phase reforming of 1,2-PDO solutions was experimentally analyzed. A mechanistic approach was used to trace the preferred paths according to calculated activation barriers of the elementary steps; in this way, the presence or absence of some hypothesized intermediates in the experiments was computationally rationalized. Hydroxyacetone was demonstrated to be among the most favored decomposition products. The competit…

Inorganic chemistrySurfaces Coatings and Filmchemistry.chemical_element02 engineering and technology010402 general chemistry01 natural sciencesCatalysisPropanediolchemistry.chemical_compoundComputational chemistryPhysical and Theoretical ChemistryCarbon chainElectronic Optical and Magnetic MaterialHydroxyacetoneDecarbonylationAqueous two-phase system021001 nanoscience & nanotechnologyDecomposition0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsEnergy (all)General Energychemistry0210 nano-technologyPlatinumThe Journal of Physical Chemistry C
researchProduct

Confined But-2-ene catalytic isomerization inside H-ZSM-5 models: A DFT study

2015

The isomerization of cis-but-2-ene to trans-but-2-ene within a 22T H-ZSM-5 zeolite model, also in the presence of two adsorbed Pd atoms, has been studied by DFT calculations. The results obtained allow us to state that the cis/trans but-2-ene isomerization can easily proceed inside unsupported zeolite cavities. In this case, differently than in the gas phase reaction, the trans-but-2-ene is less stable than the cis-but-2-ene, when adsorbed on the zeolite inner surface. Excluding the adsorption-desorption steps, the isomerization process involves two intermediates and three transition states, whose energy content is always very low with respect to that of reagents and intermediate species. T…

AdsorptionChemistryReagentPhysical and Theoretical ChemistryZSM-5ZeolitePhotochemistryIsomerizationEne reactionTransition stateComputer Science ApplicationsCatalysiszeoliteIsomerization catalysis computational chemistry
researchProduct

Computational approaches used in the POLYCAT EU project

2012

POLYCAT catalysis
researchProduct