6533b7cffe1ef96bd1259b3d
RESEARCH PRODUCT
Soybean Ferritin Expression in Saccharomyces cerevisiae Modulates Iron Accumulation and Resistance to Elevated Iron Concentrations
Rosa De LlanosJosep Fita-torróCarlos Andrés Martínez-garayAntonia María RomeroSergi PuigMaría Teresa Martínez-pastorsubject
0301 basic medicineIronSaccharomyces cerevisiaeGene ExpressionVacuoleSaccharomyces cerevisiaeBiologymedicine.disease_causeApplied Microbiology and Biotechnology03 medical and health sciencesOrganellemedicineCloning MolecularPlant ProteinsFerritin030102 biochemistry & molecular biologyEcologyIron deficiencyfood and beveragesMetabolismIron deficiencybiology.organism_classificationmedicine.diseaseIron metabolismRecombinant ProteinsYeastYeastFerritinSFerH2SFerH1030104 developmental biologyBiochemistryFerritinsbiology.proteinSoybeansOxidative stressFood ScienceBiotechnologydescription
Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations.
year | journal | country | edition | language |
---|---|---|---|---|
2016-01-28 |