6533b7d0fe1ef96bd1259ba6

RESEARCH PRODUCT

Microfabrication of hybrid fluid membrane for microengines

R ChutaniF LanzettaM. De LabachelerieFabien FormosaAdrien Badel

subject

HistoryMaterials scienceFabrication020209 energyComposite number02 engineering and technologyEducation[SPI.AUTO]Engineering Sciences [physics]/Automatic[SPI.MAT]Engineering Sciences [physics]/Materials0202 electrical engineering electronic engineering information engineering[PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Fluid mechanics [physics.class-ph]Composite material[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsRTV siliconeComputingMilieux_MISCELLANEOUSchemistry.chemical_classificationMicroelectromechanical systems[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph][SPI.NRJ]Engineering Sciences [physics]/Electric powerPolymer021001 nanoscience & nanotechnologyComputer Science ApplicationsMembranechemistryAnodic bonding[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph]0210 nano-technologyMicrofabrication

description

International audience; This paper describes the microfabrication and dynamic characterization of thick membranes providing a technological solution for microengines. The studied membranes are called hybrid fluid-membrane (HFM) and consist of two thin membranes that encapsulate an incompressible fluid. This work details the microelectromechanical system (MEMS) scalable fabrication and characterization of HFMs. The membranes are composite structures based on Silicon spiral springs embedded in a polymer (RTV silicone). The anodic bonding of multiple stacks of Si/glass structures, the fluid filling and the sealing have been demonstrated. Various HFMs were successfully fabricated and their dynamic characterization demonstrates the agreement between experimental and theoretical results.

http://hal.univ-smb.fr/hal-01322272