6533b7d0fe1ef96bd125a319

RESEARCH PRODUCT

Radiometric correction effects in Landsat multi‐date/multi‐sensor change detection studies

Francisco GringsJ. MuñozLeonardo PaoliniJosé A. SobrinoHaydee Karszenbaum

subject

Oceanografía Hidrología Recursos HídricosRadiometric correctionRadiometric correctionLand cover changeCiencias de la Tierra y relacionadas con el Medio AmbienteMulti sensorGeographyThematic MapperLandsat TMGeneral Earth and Planetary Sciencespseudo‐invariant featuresCIENCIAS NATURALES Y EXACTASChange detectionRemote sensing

description

Radiometric corrections serve to remove the effects that alter the spectral characteristics of land features, except for actual changes in ground target, becoming mandatory in multi‐sensor, multi‐date studies. In this paper, we evaluate the effects of two types of radiometric correction methods (absolute and relative) for the determination of land cover changes, using Landsat TM and Landsat ETM+ images. In addition, we present an improvement made to the relative correction method addressed. Absolute correction includes a cross‐calibration between TM and ETM+ images, and the application of an atmospheric correction protocol. Relative correction normalizes the images using pseudo‐invariant features (PIFs) selected through band‐to‐band PCA analysis. We present a new algorithm for PIFs selection in order to improve normalization results. A post‐correction evaluation index (Quadratic Difference Index (QD)), and post‐classification and change detection results were used to evaluate the performance of the methods. Only the absolute correction method and the new relative correction method presented in this paper show good post‐correction and post‐classification results (QD index ≈ 0; overall accuracy >80%; kappa >0.65) for all the images used. Land cover change estimations based on uncorrected images present unrealistic change rates (two to three times those obtained with corrected images), which highlights the fact that radiometric corrections are necessary in multi‐date multi‐sensor land cover change analysis. Fil: Paolini, Leonardo. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo. Laboratorio de Investigaciones Ecológicas de las Yungas; Argentina Fil: Grings, Francisco Matias. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina Fil: Sobrino, Jose Antonio. Universidad de Valencia; España Fil: Jimenez Muñoz, Juan Carlos. Universidad de Valencia; España Fil: Karszenbaum, Haydee. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina

https://doi.org/10.1080/01431160500183057