6533b7d0fe1ef96bd125a32a
RESEARCH PRODUCT
Unirationality of Hurwitz spaces of coverings of degree <= 5
Vassil Kanevsubject
Projective curveHurwitz spaceDegree (graph theory)Group (mathematics)General MathematicsSpace (mathematics)unirationalitycoveringvector bundles.CombinatoricsMathematics - Algebraic GeometryMonodromyLine bundle14H10 (Primary) 14H30 (Secondary)Genus (mathematics)Settore MAT/03 - GeometriaComplex numberMathematicsdescription
Let $Y$ be a smooth, projective curve of genus $g\geq 1$ over the complex numbers. Let $H^0_{d,A}(Y)$ be the Hurwitz space which parametrizes coverings $p:X \to Y$ of degree $d$, simply branched in $n=2e$ points, with monodromy group equal to $S_d$, and $det(p_{*}O_X/O_Y)$ isomorphic to a fixed line bundle $A^{-1}$ of degree $-e$. We prove that, when $d=3, 4$ or $5$ and $n$ is sufficiently large (precise bounds are given), these Hurwitz spaces are unirational. If in addition $(e,2)=1$ (when $d=3$), $(e,6)=1$ (when $d=4$) and $(e,10)=1$ (when $d=5$), then these Hurwitz spaces are rational.
year | journal | country | edition | language |
---|---|---|---|---|
2011-06-06 |