6533b7d0fe1ef96bd125a48c

RESEARCH PRODUCT

Kernel-Based Inference of Functions Over Graphs

Daniel RomeroVassilis N. IoannidisAthanasios N. NikolakopoulosGeorgios B. GiannakisMeng Ma

subject

Graph kernelTheoretical computer scienceComputer sciencebusiness.industryInference020206 networking & telecommunicationsPattern recognition02 engineering and technology01 natural sciencesGraph010104 statistics & probabilityKernel (linear algebra)Kernel methodPolynomial kernelString kernelKernel embedding of distributionsKernel (statistics)Radial basis function kernel0202 electrical engineering electronic engineering information engineeringArtificial intelligence0101 mathematicsTree kernelbusiness

description

Abstract The study of networks has witnessed an explosive growth over the past decades with several ground-breaking methods introduced. A particularly interesting—and prevalent in several fields of study—problem is that of inferring a function defined over the nodes of a network. This work presents a versatile kernel-based framework for tackling this inference problem that naturally subsumes and generalizes the reconstruction approaches put forth recently for the signal processing by the community studying graphs. Both the static and the dynamic settings are considered along with effective modeling approaches for addressing real-world problems. The analytical discussion herein is complemented with a set of numerical examples, which showcase the effectiveness of the presented techniques, as well as their merits related to state-of-the-art methods.

http://hdl.handle.net/11250/2595146