6533b7d0fe1ef96bd125a53f

RESEARCH PRODUCT

Polyamine Oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance

Francisco MarcoXavier ZarzaXavier ZarzaRubén AlcázarJoachim KopkaKostadin E. AtanasovVasileios FotopoulosVicent ArbonaTeun MunnikAntonio F. TiburcioPedro CarrascoAurelio Gómez-cadenas

subject

0106 biological sciences0301 basic medicineTranscription GeneticArabidopsis thalianaPhysiologyArabidopsisSperminePlant ScienceSodium Chloride01 natural scienceschemistry.chemical_compoundGene Expression Regulation PlantLoss of Function MutationArabidopsisPolyaminesMetabolitesArabidopsis thalianaPoliaminesAbscisic acidPrincipal Component AnalysisbiologyAgricultural SciencesSalt ToleranceMetabòlitsmetabolomicsPhenotypeBiochemistryMultigene FamilyMetabolomeCitric Acid CycleSalsCyclopentanes03 medical and health sciencesStress PhysiologicalOxylipinsRNA MessengerIonssalt toleranceArabidopsis ProteinsGene Expression ProfilingSodiumHydrogen PeroxideAgriculture Forestry and Fisheriesbiology.organism_classificationSpermidineGene Ontology030104 developmental biologychemistrythermosperminePutrescineSpermineSaltsOxidoreductases Acting on CH-NH2 Group DonorsTranscriptomejasmonatesPolyaminePolyamine oxidaseAbscisic Acid010606 plant biology & botany

description

The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine, and its structural isomer thermospermine (tSpm), into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimulation of abscisic acid and jasmonates (JA) biosynthesis, and accumulation of important compatible solutes, such as sugars, polyols and proline, as well as TCA cycle intermediates were observed in atpao5 mutants under salt stress. Expression analyses indicate that tSpm modulates the transcript levels of several target genes, including many involved in the biosynthesis and signaling of JA, some of which are already known to promote salinity tolerance. Transcriptional modulation by tSpm is isomer-dependent, thus demonstrating the specificity of this response. Overall, we conclude that tSpm triggers metabolic and transcriptional reprogramming that promotes salt stress tolerance in Arabidopsis.

10.1111/pce.12714https://dare.uva.nl/personal/pure/en/publications/polyamine-oxidase-5-lossoffunction-mutations-in-arabidopsis-thaliana-trigger-metabolic-and-transcriptional-reprogramming-and-promote-salt-stress-tolerance(ee260829-72c2-4ac2-805d-b4ea9a8af12a).html