0000000000084681

AUTHOR

Rubén Alcázar

showing 8 related works from this author

Putrescine as a signal to modulate the indispensable ABA increase under cold stress.

2009

2 páginas -- PAGS nros. 219-220

DNA BacterialAcclimatizationMutantArabidopsisCold acclimationPlant ScienceBiologyGenes Plantchemistry.chemical_compoundGene Expression Regulation PlantpolyamineFreezingCold acclimationputrescineMode of actionAnalysis of VarianceArabidopsis ProteinsReverse Transcriptase Polymerase Chain ReactionGene Expression ProfilingfungiWild typefood and beveragesfreezing toleranceArticle AddendumComplementationCold TemperatureMutagenesis InsertionalArginine decarboxylasechemistryBiochemistryABARNA PlantMutationPutrescinegene expressionPolyamineArginine decarboxylaseAbscisic AcidResearch ArticlePlant signalingbehavior
researchProduct

Polyamine Oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress to…

2017

The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine, and its structural isomer thermospermine (tSpm), into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimul…

0106 biological sciences0301 basic medicineTranscription GeneticArabidopsis thalianaPhysiologyArabidopsisSperminePlant ScienceSodium Chloride01 natural scienceschemistry.chemical_compoundGene Expression Regulation PlantLoss of Function MutationArabidopsisPolyaminesMetabolitesArabidopsis thalianaPoliaminesAbscisic acidPrincipal Component AnalysisbiologyAgricultural SciencesSalt ToleranceMetabòlitsmetabolomicsPhenotypeBiochemistryMultigene FamilyMetabolomeCitric Acid CycleSalsCyclopentanes03 medical and health sciencesStress PhysiologicalOxylipinsRNA MessengerIonssalt toleranceArabidopsis ProteinsGene Expression ProfilingSodiumHydrogen PeroxideAgriculture Forestry and Fisheriesbiology.organism_classificationSpermidineGene Ontology030104 developmental biologychemistrythermosperminePutrescineSpermineSaltsOxidoreductases Acting on CH-NH2 Group DonorsTranscriptomejasmonatesPolyaminePolyamine oxidaseAbscisic Acid010606 plant biology & botany
researchProduct

Polyamines in Developing Stress-Resistant Crops

2012

F.Marco,R.Alcazar,T.Altabella,P.Carrasco,SarvajeetSinghGill,NarendraTuteja,andA.F. TiburcioPolyamines (PAs) are small protonated compounds with key roles in plant devel-opmentandphysiologicalprocesses.PAsmayalsofunctionasstressmessengersinplant responses to different stress signals. Recent studies using exogenous appli-cation of polyamines and more contemporary genetic manipulation of polyaminelevelsincropsandmodelspeciespointtotheirinvolvementinstressprotection.Thedifferentmechanismsbywhichpolyaminesexerttheirfunctionsarepresentlybeingunraveledandinvolvedifferentmodesofactionthataresummarizedinthischapter.Polyamines are integrated with other stress-related hormone pathways, such asabscisic…

Abiotic componentSalinityTranscriptomechemistry.chemical_compoundchemistryCatabolismBotanyTranscriptional regulationGenetically modified cropsBiologyMode of actionAbscisic acid
researchProduct

Genetic Engineering Strategies for Abiotic Stress Tolerance in Plants

2015

Crop plants are affected by a variety of abiotic stresses such as salinity, drought, extreme temperatures, and oxidative stress and cause a significant yield loss (more than 50 %). In the near future, these abiotic stresses might increase because of global climate change. Abiotic stresses lead to dehydration or osmotic stress through reduced availability of water for vital cellular functions and maintenance of turgor pressure and also result in high production of reactive oxygen species (ROS). Plants are evolved with various mechanisms such as changes in cellular and metabolic processes to cope with the stress condition. Recent developments in molecular genetics have contributed greatly to …

Abiotic componentLate embryogenesis abundant proteinsOsmotic shockOsmolyteAbiotic stressfood and beveragesOsmoprotectantGenetically modified cropsBiotic stressBiologyCell biology
researchProduct

Homeostatic control of polyamine levels under long-term salt stress in Arabidopsis

2011

Salt stress has been frequently studied in its first osmotic phase. Very often, data regarding the second ionic phase is missing. It has also been suggested that Putrescine or/and Spermine could be responsible for salt resistance. In order to test this hypothesis under long-term salt stress, we obtained Arabidopsis thaliana transgenic plants harboring pRD29A::oatADC or pRD29A::GUS construction. Although Putrescine was the only polyamine significantly increased after salt acclimation in pRD29A::oatADC transgenic lines, this rendered in no advantage to this kind of stress. The higher Spermine levels found in WT and transgenic lines when compared to control conditions along with no increment o…

SalinityCarboxy-lyasesAvenaCarboxy-LyasesAcclimatizationArabidopsisSperminePlant ScienceAcclimatizationchemistry.chemical_compoundStress PhysiologicalArabidopsisPolyaminesHomeostasisArabidopsis thalianaPromoter Regions GeneticAbscisic acidbiologyArabidopsis ProteinsPlants Genetically Modifiedbiology.organism_classificationchemistryBiochemistryPutrescinePolyamineResearch PaperAbscisic AcidSignal TransductionPlant Signaling & Behavior
researchProduct

Interactions between Polyamines and Abiotic Stress Pathway Responses Unraveled by Transcriptome Analysis of Polyamine Overproducers

2011

Plant development and productivity are negatively regulated by adverse environmental conditions. The identification of stress-regulatory genes, networks, and signaling molecules should allow the development of novel strategies to obtain tolerant plants. Polyamines (PAs) are polycationic compounds with a recognized role in plant growth and development, as well as in abiotic and biotic stress responses. During the last years, knowledge on PA functions has been achieved using genetically modified plants with altered PA levels. In this review, we combine the information obtained from global transcriptome analyses in transgenic Arabidopsis plants with altered putrescine or spermine levels. Compa…

Cell signalingArabidopsisBiologyModels BiologicalBiochemistryTranscriptomechemistry.chemical_compoundStress PhysiologicalArabidopsisPolyaminesGeneticsPlant defense against herbivoryCalcium SignalingMolecular BiologyAbscisic acidPlant Stress—Special Issue 1Review ArticlesAbiotic stressfungifood and beveragesBiotic stressPlants Genetically Modifiedbiology.organism_classificationchemistryBiochemistryPutrescineMolecular MedicineTranscriptomeGenome PlantAbscisic AcidSignal TransductionBiotechnologyOMICS: A Journal of Integrative Biology
researchProduct

Integration of polyamins in the cold acclimation response

2011

8 páginas, 1 figura, 3 tablas -- PAGS nros. 31-38

AcclimatizationPlant geneticsArabidopsisCold acclimationPlant ScienceBiologyModels BiologicalTranscriptomechemistry.chemical_compoundAbscisic acidMetabolomicsGene Expression Regulation PlantBotanyGeneticsCold acclimationPolyaminesAbscisic acidRegulation of gene expressionEcologyPlant physiologyGeneral MedicineCold TemperatureArginine decarboxylasechemistryAdaptationAgronomy and Crop Science
researchProduct

Polyamine Biosynthesis Engineering as a Tool to Improve Plant Resistance to Abiotic Stress

2015

Polyamines (PAs) are small polycationic molecules which are present in all living organisms. PAs have been involved in a wide array of metabolic plant processes, extending from development to stress protection. Most of this knowledge has been achieved through the observation of PA homeostasis and manipulation of plant PA levels mediated by different approaches. This chapter summarizes the approaches undertaken to demonstrate the relationship between PAs and the stress response and, in particular, how the genetic manipulation of polyamine levels has evolved in a useful tool for the enhancement of plant stress tolerance in many species, including crops. This chapter also includes the most rec…

0106 biological sciences0301 basic medicinechemistry.chemical_classificationReactive oxygen speciesAbiotic stressfood and beveragesSpermineGenetically modified crops01 natural sciencesCell biologySpermidine03 medical and health scienceschemistry.chemical_compound030104 developmental biologychemistryBotanyPutrescinePolyamineAbscisic acid010606 plant biology & botany
researchProduct