6533b7d0fe1ef96bd125a5cd
RESEARCH PRODUCT
Microscopic interactions between ivermectin and key human and viral proteins involved in SARS-CoV-2 infection
Tom MiclotTom MiclotCristina García-iriepaCécilia HognonAntonio Francés-monerrisAntonio Francés-monerrisIsabel IriepaAntonio MonariAntonio MonariMarco MarazziGiampaolo Baronesubject
DrugProteasesIn silicomedia_common.quotation_subjectProtein domainCoronavirus Papain-Like ProteasesGeneral Physics and AstronomyPlasma protein bindingBiologyAntiviral AgentsivermectinProtein DomainsMolecular dynamics simulationHumansPhysical and Theoretical ChemistryBinding siteCoronavirus 3C Proteasesmedia_commonchemistry.chemical_classificationSARS Unique DomainBinding SitesSARS-CoV-2SARS-CoV-2 infectionRNAHydrogen BondingVirologyG-QuadruplexesMolecular Docking SimulationEnzymechemistrySettore CHIM/03 - Chimica Generale E InorganicaRNAAngiotensin-Converting Enzyme 2Hydrophobic and Hydrophilic InteractionsProtein Bindingdescription
The identification of chemical compounds able to bind specific sites of the human/viral proteins involved in the SARS-CoV-2 infection cycle is a prerequisite to design effective antiviral drugs. Here we conduct a molecular dynamics study with the aim to assess the interactions of ivermectin, an antiparasitic drug with broad-spectrum antiviral activity, with the human Angiotensin-Converting Enzyme 2 (ACE2), the viral 3CLpro and PLpro proteases, and the viral SARS Unique Domain (SUD). The drug/target interactions have been characterized in silico by describing the nature of the non-covalent interactions found and by measuring the extent of their time duration along the MD simulation. Results reveal that the ACE2 protein and the ACE2/RBD aggregates form the most persistent interactions with ivermectin, while the binding with the remaining viral proteins is more limited and unspecific. This journal is
year | journal | country | edition | language |
---|---|---|---|---|
2021-10-13 | Physical Chemistry Chemical Physics |