6533b7d0fe1ef96bd125a5d2

RESEARCH PRODUCT

Network reconstruction for trans acting genetic loci using multi-omics data and prior information.

Holger ProkischSonja KunzeChristian HerderJohn C. ChambersKonstatin StrauchAlexis BattleJohann HaweMartina Mueller-nurasyidFabian J. TheisAshish SahaChristian GiegerSimone WahlHarald GrallertAnnette PetersMatthias HeinigMelanie Waldenberger

subject

Data Integrationeducation.field_of_studyComputer scienceScale (chemistry)Bayesian probabilityPopulationQuantitative Trait LociBiological databaseInferenceData Integration ; Machine Learning ; Multi-omics ; Network Inference ; Personalized Medicine ; Prior Information ; Simulation ; Systems BiologyComputational biologyQuantitative trait locusReplication (computing)Machine LearningPrior probabilityCohortGeneticsMolecular MedicineHumans:Medicine [Science]Gene Regulatory NetworkseducationTranscriptomeMolecular BiologyGenetics (clinical)

description

Background: Molecular measurements of the genome, the transcriptome, and the epigenome, often termed multi-omics data, provide an in-depth view on biological systems and their integration is crucial for gaining insights in complex regulatory processes. These data can be used to explain disease related genetic variants by linking them to intermediate molecular traits (quantitative trait loci, QTL). Molecular networks regulating cellular processes leave footprints in QTL results as so-called trans-QTL hotspots. Reconstructing these networks is a complex endeavor and use of biological prior information can improve network inference. However, previous efforts were limited in the types of priors used or have only been applied to model systems. In this study, we reconstruct the regulatory networks underlying trans-QTL hotspots using human cohort data and data-driven prior information. Methods: We devised a new strategy to integrate QTL with human population scale multi-omics data. State-of-the art network inference methods including BDgraph and glasso were applied to these data. Comprehensive prior information to guide network inference was manually curated from large-scale biological databases. The inference approach was extensively benchmarked using simulated data and cross-cohort replication analyses. Best performing methods were subsequently applied to real-world human cohort data. Results: Our benchmarks showed that prior-based strategies outperform methods without prior information in simulated data and show better replication across datasets. Application of our approach to human cohort data highlighted two novel regulatory networks related to schizophrenia and lean body mass for which we generated novel functional hypotheses. Conclusions: We demonstrate that existing biological knowledge can improve the integrative analysis of networks underlying trans associations and generate novel hypotheses about regulatory mechanisms. Ministry of Health (MOH) National Medical Research Council (NMRC) Published version Open Access funding enabled and organized by Projekt DEAL. MH gratefully acknowledges funding by the Federal Ministry of Education and Research (BMBF, Germany) in the project eMed:confirm (01ZX1708G) and by the German Center of Cardiovascular Research (DZHK, BMBF grant number 81Z0600106). JC is supported by the Singapore Ministry of Health’s National Medical Research Council under its Singapore Translational Research Investigator (STaR) Award (NMRC/STaR/0028/2017). AB is supported by the NIH grant 1R01MH109905. The LOLIPOP study is supported by the National Institute for Health Research (NIHR) Comprehensive Biomedical Research Centre Imperial College Healthcare NHS Trust, the NIHR Official Development Assistance (ODA, award 16/136/68), the European Union FP7 (EpiMigrant, 279143), and H2020 programs (iHealth-T2D, 643774). The KORA study was initiated and financed by the Helmholtz Zentrum München-German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. The German Diabetes Center is funded by the German Federal Ministry of Health (Berlin, Germany), the Ministry of Culture and Science of the state North Rhine-Westphalia (Düsseldorf, Germany), and grants from the German Federal Ministry of Education and Research (Berlin, Germany) to the German Center for Diabetes Research e.V. (DZD).

10.1186/s13073-022-01124-9https://pubmed.ncbi.nlm.nih.gov/36344995