6533b7d0fe1ef96bd125ae5d

RESEARCH PRODUCT

Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries.

Bernd OschmannMuhammad Nawaz TahirKarl FischerWolfgang TremelStefano PasseriniRudolf ZentelDominic Bresser

subject

AnataseMaterials sciencePolymers and PlasticsSurface PropertiesAcrylic Resins02 engineering and technologyThermal treatmentLithium010402 general chemistry01 natural scienceschemistry.chemical_compoundElectric Power SuppliesMaterials ChemistryCopolymerReversible addition−fragmentation chain-transfer polymerizationComposite materialParticle Sizechemistry.chemical_classificationIonsTitaniumNanotubesMolecular StructureOrganic ChemistryPolyacrylonitrileTemperaturePolymerElectrochemical Techniques021001 nanoscience & nanotechnologyCarbon0104 chemical scienceschemistryTransmission electron microscopyNanorod0210 nano-technology

description

Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1) .

10.1002/marc.201300531https://pubmed.ncbi.nlm.nih.gov/24115201