Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries.
Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron m…
Precursor Polymers for the Carbon Coating of Au@ZnO Multipods for Application as Active Material in Lithium-Ion Batteries
The synthesis of statistical and block copolymers based on polyacrylonitrile, as a source for carbonaceous materials, and thiol-containing repeating units as inorganic nanoparticle anchoring groups is reported. These polymers are used to coat Au@ZnO multipod heteroparticles with polymer brushes. IR spectroscopy and transmission electron microscopy prove the successful binding of the polymer onto the inorganic nanostructures. Thermogravimetric analysis is applied to compare the binding ability of the block and statistical copolymers. Subsequently, the polymer coating is transformed into a carbonaceous (partially graphitic) coating by pyrolysis. The obtained carbon coating is characterized by…
Stabilizing nanostructured lithium insertion materials via organic hybridization: A step forward towards high-power batteries
Abstract Herein, we present the electrochemical characterization of carbon-coated TiO 2 nanorods, obtained by carbonizing RAFT (reversible addition fragmentation chain transfer) polymerization derived block copolymers anchored on anatase TiO 2 nanorods. These carbon-coated TiO 2 nanorods show an improved electrochemical performance in terms of first cycle reversibility, specific capacity, cycling stability, and high rate capability. More importantly, however, the structural disordering observed in the uncoated TiO 2 nanorods by means of galvanostatic and potentiodynamic cycling as well as ex situ XRD analysis, does not occur for the carbon-coated material. Preventing this structural disorde…
Carbon-Coated Anatase TiO2Nanotubes for Li- and Na-Ion Anodes
aInstitute of Physical Chemistry and MEET Battery Research Centre, University of Muenster, 48149 Muenster, Germany bHelmholtz-Institute Ulm (HIU), Electrochemistry I, 89081 Ulm, Germany cKarlsruher Institute of Technology (KIT), 76021 Karlsruhe, Germany dInstitute for Organic Chemistry, University of Mainz, 55128 Mainz, Germany eGraduate School Materials Science in Mainz, 55128 Mainz, Germany fInstitute for Inorganic and Analytical Chemistry, University of Mainz, 55128 Mainz, Germany gMax Planck Institute for Polymer Research, 55128 Mainz, Germany