6533b7d0fe1ef96bd125ae5f

RESEARCH PRODUCT

Strongly confined fluids: Diverging time scales and slowing down of equilibration

Rolf Schilling

subject

Statistical Mechanics (cond-mat.stat-mech)ScatteringDegrees of freedom (physics and chemistry)Pair distribution functionFOS: Physical sciences02 engineering and technologyCondensed Matter - Soft Condensed Matter021001 nanoscience & nanotechnologyCoupling (probability)01 natural sciencesNewtonian dynamicsQuantum mechanics0103 physical sciencesRelaxation (physics)Soft Condensed Matter (cond-mat.soft)010306 general physics0210 nano-technologyPair potentialCondensed Matter - Statistical MechanicsEnergy (signal processing)Mathematics

description

The Newtonian dynamics of strongly confined fluids exhibits a rich behavior. Its confined and unconfined degrees of freedom decouple for confinement length $L \to 0$. In that case and for a slit geometry the intermediate scattering functions $S_{\mu\nu}(q,t)$ simplify, resulting for $(\mu,\nu) \neq (0,0)$ in a Knudsen-gas like behavior of the confined degrees of freedom, and otherwise in $S_{\parallel}(q,t)$, describing the structural relaxation of the unconfined ones. Taking the coupling into account we prove that the energy fluctuations relax exponentially. For smooth potentials the relaxation times diverge as $L^{-3}$ and $L^{-4}$, respectively, for the confined and unconfined degrees of freedom. The strength of the $L^{-3}$ divergence can be calculated analytically. It depends on the pair potential and the two-dimensional pair distribution function. Experimental setups are suggested to test these predictions.

https://dx.doi.org/10.48550/arxiv.1606.00653